doc-src/TutorialI/Sets/Functions.thy
changeset 10294 2ec9c808a8a7
child 10341 6eb91805a012
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/TutorialI/Sets/Functions.thy	Mon Oct 23 16:24:52 2000 +0200
@@ -0,0 +1,149 @@
+theory Functions = Main:
+
+ML "Pretty.setmargin 64"
+
+
+text{*
+@{thm[display] id_def[no_vars]}
+\rulename{id_def}
+
+@{thm[display] o_def[no_vars]}
+\rulename{o_def}
+
+@{thm[display] o_assoc[no_vars]}
+\rulename{o_assoc}
+*}
+
+text{*
+@{thm[display] fun_upd_apply[no_vars]}
+\rulename{fun_upd_apply}
+
+@{thm[display] fun_upd_upd[no_vars]}
+\rulename{fun_upd_upd}
+*}
+
+
+text{*
+definitions of injective, surjective, bijective
+
+@{thm[display] inj_on_def[no_vars]}
+\rulename{inj_on_def}
+
+@{thm[display] surj_def[no_vars]}
+\rulename{surj_def}
+
+@{thm[display] bij_def[no_vars]}
+\rulename{bij_def}
+*}
+
+
+
+text{*
+possibly interesting theorems about inv
+*}
+
+text{*
+@{thm[display] inv_f_f[no_vars]}
+\rulename{inv_f_f}
+
+@{thm[display] inj_imp_surj_inv[no_vars]}
+\rulename{inj_imp_surj_inv}
+
+@{thm[display] surj_imp_inj_inv[no_vars]}
+\rulename{surj_imp_inj_inv}
+
+@{thm[display] surj_f_inv_f[no_vars]}
+\rulename{surj_f_inv_f}
+
+@{thm[display] bij_imp_bij_inv[no_vars]}
+\rulename{bij_imp_bij_inv}
+
+@{thm[display] inv_inv_eq[no_vars]}
+\rulename{inv_inv_eq}
+
+@{thm[display] o_inv_distrib[no_vars]}
+\rulename{o_inv_distrib}
+*}
+
+
+
+text{*
+small sample proof
+
+@{thm[display] ext[no_vars]}
+\rulename{ext}
+
+@{thm[display] expand_fun_eq[no_vars]}
+\rulename{expand_fun_eq}
+*}
+
+lemma "inj f \<Longrightarrow> (f o g = f o h) = (g = h)";
+  apply (simp add: expand_fun_eq inj_on_def o_def)
+  apply (auto)
+  done
+
+text{*
+\begin{isabelle}
+inj\ f\ \isasymLongrightarrow \ (f\ \isasymcirc \ g\ =\ f\ \isasymcirc \ h)\ =\ (g\ =\ h)\isanewline
+\ 1.\ \isasymforall x\ y.\ f\ x\ =\ f\ y\ \isasymlongrightarrow \ x\ =\ y\ \isasymLongrightarrow \isanewline
+\ \ \ \ (\isasymforall x.\ f\ (g\ x)\ =\ f\ (h\ x))\ =\ (\isasymforall x.\ g\ x\ =\ h\ x)
+\end{isabelle}
+*}
+ 
+
+text{*image, inverse image*}
+
+text{*
+@{thm[display] image_def[no_vars]}
+\rulename{image_def}
+*}
+
+text{*
+@{thm[display] image_Un[no_vars]}
+\rulename{image_Un}
+*}
+
+text{*
+@{thm[display] image_compose[no_vars]}
+\rulename{image_compose}
+
+@{thm[display] image_Int[no_vars]}
+\rulename{image_Int}
+
+@{thm[display] bij_image_Compl_eq[no_vars]}
+\rulename{bij_image_Compl_eq}
+*}
+
+
+text{*
+illustrates Union as well as image
+*}
+lemma "f``A \<union> g``A = (\<Union>x\<in>A. {f x, g x})"
+  apply (blast)
+  done
+
+lemma "f `` {(x,y). P x y} = {f(x,y) | x y. P x y}"
+  apply (blast)
+  done
+
+text{*actually a macro!*}
+
+lemma "range f = f``UNIV"
+  apply (blast)
+  done
+
+
+text{*
+inverse image
+*}
+
+text{*
+@{thm[display] vimage_def[no_vars]}
+\rulename{vimage_def}
+
+@{thm[display] vimage_Compl[no_vars]}
+\rulename{vimage_Compl}
+*}
+
+
+end