doc-src/Codegen/Thy/Adaption.thy
changeset 30226 2f4684e2ea95
parent 28714 1992553cccfe
child 30227 853abb4853cc
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Codegen/Thy/Adaption.thy	Tue Mar 03 11:00:51 2009 +0100
@@ -0,0 +1,361 @@
+theory Adaption
+imports Setup
+begin
+
+setup %invisible {* Code_Target.extend_target ("\<SML>", ("SML", K I)) *}
+
+section {* Adaption to target languages \label{sec:adaption} *}
+
+subsection {* Adapting code generation *}
+
+text {*
+  The aspects of code generation introduced so far have two aspects
+  in common:
+
+  \begin{itemize}
+    \item They act uniformly, without reference to a specific
+       target language.
+    \item They are \emph{safe} in the sense that as long as you trust
+       the code generator meta theory and implementation, you cannot
+       produce programs that yield results which are not derivable
+       in the logic.
+  \end{itemize}
+
+  \noindent In this section we will introduce means to \emph{adapt} the serialiser
+  to a specific target language, i.e.~to print program fragments
+  in a way which accommodates \qt{already existing} ingredients of
+  a target language environment, for three reasons:
+
+  \begin{itemize}
+    \item improving readability and aesthetics of generated code
+    \item gaining efficiency
+    \item interface with language parts which have no direct counterpart
+      in @{text "HOL"} (say, imperative data structures)
+  \end{itemize}
+
+  \noindent Generally, you should avoid using those features yourself
+  \emph{at any cost}:
+
+  \begin{itemize}
+    \item The safe configuration methods act uniformly on every target language,
+      whereas for adaption you have to treat each target language separate.
+    \item Application is extremely tedious since there is no abstraction
+      which would allow for a static check, making it easy to produce garbage.
+    \item More or less subtle errors can be introduced unconsciously.
+  \end{itemize}
+
+  \noindent However, even if you ought refrain from setting up adaption
+  yourself, already the @{text "HOL"} comes with some reasonable default
+  adaptions (say, using target language list syntax).  There also some
+  common adaption cases which you can setup by importing particular
+  library theories.  In order to understand these, we provide some clues here;
+  these however are not supposed to replace a careful study of the sources.
+*}
+
+subsection {* The adaption principle *}
+
+text {*
+  The following figure illustrates what \qt{adaption} is conceptually
+  supposed to be:
+
+  \begin{figure}[here]
+    \begin{tikzpicture}[scale = 0.5]
+      \tikzstyle water=[color = blue, thick]
+      \tikzstyle ice=[color = black, very thick, cap = round, join = round, fill = white]
+      \tikzstyle process=[color = green, semithick, ->]
+      \tikzstyle adaption=[color = red, semithick, ->]
+      \tikzstyle target=[color = black]
+      \foreach \x in {0, ..., 24}
+        \draw[style=water] (\x, 0.25) sin + (0.25, 0.25) cos + (0.25, -0.25) sin
+          + (0.25, -0.25) cos + (0.25, 0.25);
+      \draw[style=ice] (1, 0) --
+        (3, 6) node[above, fill=white] {logic} -- (5, 0) -- cycle;
+      \draw[style=ice] (9, 0) --
+        (11, 6) node[above, fill=white] {intermediate language} -- (13, 0) -- cycle;
+      \draw[style=ice] (15, -6) --
+        (19, 6) node[above, fill=white] {target language} -- (23, -6) -- cycle;
+      \draw[style=process]
+        (3.5, 3) .. controls (7, 5) .. node[fill=white] {translation} (10.5, 3);
+      \draw[style=process]
+        (11.5, 3) .. controls (15, 5) .. node[fill=white] (serialisation) {serialisation} (18.5, 3);
+      \node (adaption) at (11, -2) [style=adaption] {adaption};
+      \node at (19, 3) [rotate=90] {generated};
+      \node at (19.5, -5) {language};
+      \node at (19.5, -3) {library};
+      \node (includes) at (19.5, -1) {includes};
+      \node (reserved) at (16.5, -3) [rotate=72] {reserved}; % proper 71.57
+      \draw[style=process]
+        (includes) -- (serialisation);
+      \draw[style=process]
+        (reserved) -- (serialisation);
+      \draw[style=adaption]
+        (adaption) -- (serialisation);
+      \draw[style=adaption]
+        (adaption) -- (includes);
+      \draw[style=adaption]
+        (adaption) -- (reserved);
+    \end{tikzpicture}
+    \caption{The adaption principle}
+    \label{fig:adaption}
+  \end{figure}
+
+  \noindent In the tame view, code generation acts as broker between
+  @{text logic}, @{text "intermediate language"} and
+  @{text "target language"} by means of @{text translation} and
+  @{text serialisation};  for the latter, the serialiser has to observe
+  the structure of the @{text language} itself plus some @{text reserved}
+  keywords which have to be avoided for generated code.
+  However, if you consider @{text adaption} mechanisms, the code generated
+  by the serializer is just the tip of the iceberg:
+
+  \begin{itemize}
+    \item @{text serialisation} can be \emph{parametrised} such that
+      logical entities are mapped to target-specific ones
+      (e.g. target-specific list syntax,
+        see also \secref{sec:adaption_mechanisms})
+    \item Such parametrisations can involve references to a
+      target-specific standard @{text library} (e.g. using
+      the @{text Haskell} @{verbatim Maybe} type instead
+      of the @{text HOL} @{type "option"} type);
+      if such are used, the corresponding identifiers
+      (in our example, @{verbatim Maybe}, @{verbatim Nothing}
+      and @{verbatim Just}) also have to be considered @{text reserved}.
+    \item Even more, the user can enrich the library of the
+      target-language by providing code snippets
+      (\qt{@{text "includes"}}) which are prepended to
+      any generated code (see \secref{sec:include});  this typically
+      also involves further @{text reserved} identifiers.
+  \end{itemize}
+
+  \noindent As figure \ref{fig:adaption} illustrates, all these adaption mechanisms
+  have to act consistently;  it is at the discretion of the user
+  to take care for this.
+*}
+
+subsection {* Common adaption patterns *}
+
+text {*
+  The @{theory HOL} @{theory Main} theory already provides a code
+  generator setup
+  which should be suitable for most applications.  Common extensions
+  and modifications are available by certain theories of the @{text HOL}
+  library; beside being useful in applications, they may serve
+  as a tutorial for customising the code generator setup (see below
+  \secref{sec:adaption_mechanisms}).
+
+  \begin{description}
+
+    \item[@{theory "Code_Integer"}] represents @{text HOL} integers by big
+       integer literals in target languages.
+    \item[@{theory "Code_Char"}] represents @{text HOL} characters by 
+       character literals in target languages.
+    \item[@{theory "Code_Char_chr"}] like @{text "Code_Char"},
+       but also offers treatment of character codes; includes
+       @{theory "Code_Char"}.
+    \item[@{theory "Efficient_Nat"}] \label{eff_nat} implements natural numbers by integers,
+       which in general will result in higher efficiency; pattern
+       matching with @{term "0\<Colon>nat"} / @{const "Suc"}
+       is eliminated;  includes @{theory "Code_Integer"}
+       and @{theory "Code_Index"}.
+    \item[@{theory "Code_Index"}] provides an additional datatype
+       @{typ index} which is mapped to target-language built-in integers.
+       Useful for code setups which involve e.g. indexing of
+       target-language arrays.
+    \item[@{theory "Code_Message"}] provides an additional datatype
+       @{typ message_string} which is isomorphic to strings;
+       @{typ message_string}s are mapped to target-language strings.
+       Useful for code setups which involve e.g. printing (error) messages.
+
+  \end{description}
+
+  \begin{warn}
+    When importing any of these theories, they should form the last
+    items in an import list.  Since these theories adapt the
+    code generator setup in a non-conservative fashion,
+    strange effects may occur otherwise.
+  \end{warn}
+*}
+
+
+subsection {* Parametrising serialisation \label{sec:adaption_mechanisms} *}
+
+text {*
+  Consider the following function and its corresponding
+  SML code:
+*}
+
+primrec %quote in_interval :: "nat \<times> nat \<Rightarrow> nat \<Rightarrow> bool" where
+  "in_interval (k, l) n \<longleftrightarrow> k \<le> n \<and> n \<le> l"
+(*<*)
+code_type %invisible bool
+  (SML)
+code_const %invisible True and False and "op \<and>" and Not
+  (SML and and and)
+(*>*)
+text %quote {*@{code_stmts in_interval (SML)}*}
+
+text {*
+  \noindent Though this is correct code, it is a little bit unsatisfactory:
+  boolean values and operators are materialised as distinguished
+  entities with have nothing to do with the SML-built-in notion
+  of \qt{bool}.  This results in less readable code;
+  additionally, eager evaluation may cause programs to
+  loop or break which would perfectly terminate when
+  the existing SML @{verbatim "bool"} would be used.  To map
+  the HOL @{typ bool} on SML @{verbatim "bool"}, we may use
+  \qn{custom serialisations}:
+*}
+
+code_type %quotett bool
+  (SML "bool")
+code_const %quotett True and False and "op \<and>"
+  (SML "true" and "false" and "_ andalso _")
+
+text {*
+  \noindent The @{command code_type} command takes a type constructor
+  as arguments together with a list of custom serialisations.
+  Each custom serialisation starts with a target language
+  identifier followed by an expression, which during
+  code serialisation is inserted whenever the type constructor
+  would occur.  For constants, @{command code_const} implements
+  the corresponding mechanism.  Each ``@{verbatim "_"}'' in
+  a serialisation expression is treated as a placeholder
+  for the type constructor's (the constant's) arguments.
+*}
+
+text %quote {*@{code_stmts in_interval (SML)}*}
+
+text {*
+  \noindent This still is not perfect: the parentheses
+  around the \qt{andalso} expression are superfluous.
+  Though the serialiser
+  by no means attempts to imitate the rich Isabelle syntax
+  framework, it provides some common idioms, notably
+  associative infixes with precedences which may be used here:
+*}
+
+code_const %quotett "op \<and>"
+  (SML infixl 1 "andalso")
+
+text %quote {*@{code_stmts in_interval (SML)}*}
+
+text {*
+  \noindent The attentive reader may ask how we assert that no generated
+  code will accidentally overwrite.  For this reason the serialiser has
+  an internal table of identifiers which have to be avoided to be used
+  for new declarations.  Initially, this table typically contains the
+  keywords of the target language.  It can be extended manually, thus avoiding
+  accidental overwrites, using the @{command "code_reserved"} command:
+*}
+
+code_reserved %quote "\<SML>" bool true false andalso
+
+text {*
+  \noindent Next, we try to map HOL pairs to SML pairs, using the
+  infix ``@{verbatim "*"}'' type constructor and parentheses:
+*}
+(*<*)
+code_type %invisible *
+  (SML)
+code_const %invisible Pair
+  (SML)
+(*>*)
+code_type %quotett *
+  (SML infix 2 "*")
+code_const %quotett Pair
+  (SML "!((_),/ (_))")
+
+text {*
+  \noindent The initial bang ``@{verbatim "!"}'' tells the serialiser
+  never to put
+  parentheses around the whole expression (they are already present),
+  while the parentheses around argument place holders
+  tell not to put parentheses around the arguments.
+  The slash ``@{verbatim "/"}'' (followed by arbitrary white space)
+  inserts a space which may be used as a break if necessary
+  during pretty printing.
+
+  These examples give a glimpse what mechanisms
+  custom serialisations provide; however their usage
+  requires careful thinking in order not to introduce
+  inconsistencies -- or, in other words:
+  custom serialisations are completely axiomatic.
+
+  A further noteworthy details is that any special
+  character in a custom serialisation may be quoted
+  using ``@{verbatim "'"}''; thus, in
+  ``@{verbatim "fn '_ => _"}'' the first
+  ``@{verbatim "_"}'' is a proper underscore while the
+  second ``@{verbatim "_"}'' is a placeholder.
+*}
+
+
+subsection {* @{text Haskell} serialisation *}
+
+text {*
+  For convenience, the default
+  @{text HOL} setup for @{text Haskell} maps the @{class eq} class to
+  its counterpart in @{text Haskell}, giving custom serialisations
+  for the class @{class eq} (by command @{command code_class}) and its operation
+  @{const HOL.eq}
+*}
+
+code_class %quotett eq
+  (Haskell "Eq")
+
+code_const %quotett "op ="
+  (Haskell infixl 4 "==")
+
+text {*
+  \noindent A problem now occurs whenever a type which
+  is an instance of @{class eq} in @{text HOL} is mapped
+  on a @{text Haskell}-built-in type which is also an instance
+  of @{text Haskell} @{text Eq}:
+*}
+
+typedecl %quote bar
+
+instantiation %quote bar :: eq
+begin
+
+definition %quote "eq_class.eq (x\<Colon>bar) y \<longleftrightarrow> x = y"
+
+instance %quote by default (simp add: eq_bar_def)
+
+end %quote
+
+code_type %quotett bar
+  (Haskell "Integer")
+
+text {*
+  \noindent The code generator would produce
+  an additional instance, which of course is rejected by the @{text Haskell}
+  compiler.
+  To suppress this additional instance, use
+  @{text "code_instance"}:
+*}
+
+code_instance %quotett bar :: eq
+  (Haskell -)
+
+
+subsection {* Enhancing the target language context \label{sec:include} *}
+
+text {*
+  In rare cases it is necessary to \emph{enrich} the context of a
+  target language;  this is accomplished using the @{command "code_include"}
+  command:
+*}
+
+code_include %quotett Haskell "Errno"
+{*errno i = error ("Error number: " ++ show i)*}
+
+code_reserved %quotett Haskell Errno
+
+text {*
+  \noindent Such named @{text include}s are then prepended to every generated code.
+  Inspect such code in order to find out how @{command "code_include"} behaves
+  with respect to a particular target language.
+*}
+
+end