doc-src/IsarAdvanced/Classes/Thy/Classes.thy
changeset 30226 2f4684e2ea95
parent 30202 2775062fd3a9
child 30227 853abb4853cc
--- a/doc-src/IsarAdvanced/Classes/Thy/Classes.thy	Mon Mar 02 16:58:39 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,635 +0,0 @@
-theory Classes
-imports Main Setup
-begin
-
-chapter {* Haskell-style classes with Isabelle/Isar *}
-
-section {* Introduction *}
-
-text {*
-  Type classes were introduces by Wadler and Blott \cite{wadler89how}
-  into the Haskell language, to allow for a reasonable implementation
-  of overloading\footnote{throughout this tutorial, we are referring
-  to classical Haskell 1.0 type classes, not considering
-  later additions in expressiveness}.
-  As a canonical example, a polymorphic equality function
-  @{text "eq \<Colon> \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> bool"} which is overloaded on different
-  types for @{text "\<alpha>"}, which is achieved by splitting introduction
-  of the @{text eq} function from its overloaded definitions by means
-  of @{text class} and @{text instance} declarations:
-
-  \begin{quote}
-
-  \noindent@{text "class eq where"}\footnote{syntax here is a kind of isabellized Haskell} \\
-  \hspace*{2ex}@{text "eq \<Colon> \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> bool"}
-
-  \medskip\noindent@{text "instance nat \<Colon> eq where"} \\
-  \hspace*{2ex}@{text "eq 0 0 = True"} \\
-  \hspace*{2ex}@{text "eq 0 _ = False"} \\
-  \hspace*{2ex}@{text "eq _ 0 = False"} \\
-  \hspace*{2ex}@{text "eq (Suc n) (Suc m) = eq n m"}
-
-  \medskip\noindent@{text "instance (\<alpha>\<Colon>eq, \<beta>\<Colon>eq) pair \<Colon> eq where"} \\
-  \hspace*{2ex}@{text "eq (x1, y1) (x2, y2) = eq x1 x2 \<and> eq y1 y2"}
-
-  \medskip\noindent@{text "class ord extends eq where"} \\
-  \hspace*{2ex}@{text "less_eq \<Colon> \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> bool"} \\
-  \hspace*{2ex}@{text "less \<Colon> \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> bool"}
-
-  \end{quote}
-
-  \noindent Type variables are annotated with (finitely many) classes;
-  these annotations are assertions that a particular polymorphic type
-  provides definitions for overloaded functions.
-
-  Indeed, type classes not only allow for simple overloading
-  but form a generic calculus, an instance of order-sorted
-  algebra \cite{Nipkow-Prehofer:1993,nipkow-sorts93,Wenzel:1997:TPHOL}.
-
-  From a software engeneering point of view, type classes
-  roughly correspond to interfaces in object-oriented languages like Java;
-  so, it is naturally desirable that type classes do not only
-  provide functions (class parameters) but also state specifications
-  implementations must obey.  For example, the @{text "class eq"}
-  above could be given the following specification, demanding that
-  @{text "class eq"} is an equivalence relation obeying reflexivity,
-  symmetry and transitivity:
-
-  \begin{quote}
-
-  \noindent@{text "class eq where"} \\
-  \hspace*{2ex}@{text "eq \<Colon> \<alpha> \<Rightarrow> \<alpha> \<Rightarrow> bool"} \\
-  @{text "satisfying"} \\
-  \hspace*{2ex}@{text "refl: eq x x"} \\
-  \hspace*{2ex}@{text "sym: eq x y \<longleftrightarrow> eq x y"} \\
-  \hspace*{2ex}@{text "trans: eq x y \<and> eq y z \<longrightarrow> eq x z"}
-
-  \end{quote}
-
-  \noindent From a theoretic point of view, type classes are lightweight
-  modules; Haskell type classes may be emulated by
-  SML functors \cite{classes_modules}. 
-  Isabelle/Isar offers a discipline of type classes which brings
-  all those aspects together:
-
-  \begin{enumerate}
-    \item specifying abstract parameters together with
-       corresponding specifications,
-    \item instantiating those abstract parameters by a particular
-       type
-    \item in connection with a ``less ad-hoc'' approach to overloading,
-    \item with a direct link to the Isabelle module system
-      (aka locales \cite{kammueller-locales}).
-  \end{enumerate}
-
-  \noindent Isar type classes also directly support code generation
-  in a Haskell like fashion.
-
-  This tutorial demonstrates common elements of structured specifications
-  and abstract reasoning with type classes by the algebraic hierarchy of
-  semigroups, monoids and groups.  Our background theory is that of
-  Isabelle/HOL \cite{isa-tutorial}, for which some
-  familiarity is assumed.
-
-  Here we merely present the look-and-feel for end users.
-  Internally, those are mapped to more primitive Isabelle concepts.
-  See \cite{Haftmann-Wenzel:2006:classes} for more detail.
-*}
-
-section {* A simple algebra example \label{sec:example} *}
-
-subsection {* Class definition *}
-
-text {*
-  Depending on an arbitrary type @{text "\<alpha>"}, class @{text
-  "semigroup"} introduces a binary operator @{text "(\<otimes>)"} that is
-  assumed to be associative:
-*}
-
-class %quote semigroup =
-  fixes mult :: "\<alpha> \<Rightarrow> \<alpha> \<Rightarrow> \<alpha>"    (infixl "\<otimes>" 70)
-  assumes assoc: "(x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"
-
-text {*
-  \noindent This @{command class} specification consists of two
-  parts: the \qn{operational} part names the class parameter
-  (@{element "fixes"}), the \qn{logical} part specifies properties on them
-  (@{element "assumes"}).  The local @{element "fixes"} and
-  @{element "assumes"} are lifted to the theory toplevel,
-  yielding the global
-  parameter @{term [source] "mult \<Colon> \<alpha>\<Colon>semigroup \<Rightarrow> \<alpha> \<Rightarrow> \<alpha>"} and the
-  global theorem @{fact "semigroup.assoc:"}~@{prop [source] "\<And>x y
-  z \<Colon> \<alpha>\<Colon>semigroup. (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)"}.
-*}
-
-
-subsection {* Class instantiation \label{sec:class_inst} *}
-
-text {*
-  The concrete type @{typ int} is made a @{class semigroup}
-  instance by providing a suitable definition for the class parameter
-  @{text "(\<otimes>)"} and a proof for the specification of @{fact assoc}.
-  This is accomplished by the @{command instantiation} target:
-*}
-
-instantiation %quote int :: semigroup
-begin
-
-definition %quote
-  mult_int_def: "i \<otimes> j = i + (j\<Colon>int)"
-
-instance %quote proof
-  fix i j k :: int have "(i + j) + k = i + (j + k)" by simp
-  then show "(i \<otimes> j) \<otimes> k = i \<otimes> (j \<otimes> k)"
-    unfolding mult_int_def .
-qed
-
-end %quote
-
-text {*
-  \noindent @{command instantiation} allows to define class parameters
-  at a particular instance using common specification tools (here,
-  @{command definition}).  The concluding @{command instance}
-  opens a proof that the given parameters actually conform
-  to the class specification.  Note that the first proof step
-  is the @{method default} method,
-  which for such instance proofs maps to the @{method intro_classes} method.
-  This boils down an instance judgement to the relevant primitive
-  proof goals and should conveniently always be the first method applied
-  in an instantiation proof.
-
-  From now on, the type-checker will consider @{typ int}
-  as a @{class semigroup} automatically, i.e.\ any general results
-  are immediately available on concrete instances.
-
-  \medskip Another instance of @{class semigroup} are the natural numbers:
-*}
-
-instantiation %quote nat :: semigroup
-begin
-
-primrec %quote mult_nat where
-  "(0\<Colon>nat) \<otimes> n = n"
-  | "Suc m \<otimes> n = Suc (m \<otimes> n)"
-
-instance %quote proof
-  fix m n q :: nat 
-  show "m \<otimes> n \<otimes> q = m \<otimes> (n \<otimes> q)"
-    by (induct m) auto
-qed
-
-end %quote
-
-text {*
-  \noindent Note the occurence of the name @{text mult_nat}
-  in the primrec declaration;  by default, the local name of
-  a class operation @{text f} to instantiate on type constructor
-  @{text \<kappa>} are mangled as @{text f_\<kappa>}.  In case of uncertainty,
-  these names may be inspected using the @{command "print_context"} command
-  or the corresponding ProofGeneral button.
-*}
-
-subsection {* Lifting and parametric types *}
-
-text {*
-  Overloaded definitions giving on class instantiation
-  may include recursion over the syntactic structure of types.
-  As a canonical example, we model product semigroups
-  using our simple algebra:
-*}
-
-instantiation %quote * :: (semigroup, semigroup) semigroup
-begin
-
-definition %quote
-  mult_prod_def: "p\<^isub>1 \<otimes> p\<^isub>2 = (fst p\<^isub>1 \<otimes> fst p\<^isub>2, snd p\<^isub>1 \<otimes> snd p\<^isub>2)"
-
-instance %quote proof
-  fix p\<^isub>1 p\<^isub>2 p\<^isub>3 :: "\<alpha>\<Colon>semigroup \<times> \<beta>\<Colon>semigroup"
-  show "p\<^isub>1 \<otimes> p\<^isub>2 \<otimes> p\<^isub>3 = p\<^isub>1 \<otimes> (p\<^isub>2 \<otimes> p\<^isub>3)"
-    unfolding mult_prod_def by (simp add: assoc)
-qed      
-
-end %quote
-
-text {*
-  \noindent Associativity from product semigroups is
-  established using
-  the definition of @{text "(\<otimes>)"} on products and the hypothetical
-  associativity of the type components;  these hypotheses
-  are facts due to the @{class semigroup} constraints imposed
-  on the type components by the @{command instance} proposition.
-  Indeed, this pattern often occurs with parametric types
-  and type classes.
-*}
-
-
-subsection {* Subclassing *}
-
-text {*
-  We define a subclass @{text monoidl} (a semigroup with a left-hand neutral)
-  by extending @{class semigroup}
-  with one additional parameter @{text neutral} together
-  with its property:
-*}
-
-class %quote monoidl = semigroup +
-  fixes neutral :: "\<alpha>" ("\<one>")
-  assumes neutl: "\<one> \<otimes> x = x"
-
-text {*
-  \noindent Again, we prove some instances, by
-  providing suitable parameter definitions and proofs for the
-  additional specifications.  Observe that instantiations
-  for types with the same arity may be simultaneous:
-*}
-
-instantiation %quote nat and int :: monoidl
-begin
-
-definition %quote
-  neutral_nat_def: "\<one> = (0\<Colon>nat)"
-
-definition %quote
-  neutral_int_def: "\<one> = (0\<Colon>int)"
-
-instance %quote proof
-  fix n :: nat
-  show "\<one> \<otimes> n = n"
-    unfolding neutral_nat_def by simp
-next
-  fix k :: int
-  show "\<one> \<otimes> k = k"
-    unfolding neutral_int_def mult_int_def by simp
-qed
-
-end %quote
-
-instantiation %quote * :: (monoidl, monoidl) monoidl
-begin
-
-definition %quote
-  neutral_prod_def: "\<one> = (\<one>, \<one>)"
-
-instance %quote proof
-  fix p :: "\<alpha>\<Colon>monoidl \<times> \<beta>\<Colon>monoidl"
-  show "\<one> \<otimes> p = p"
-    unfolding neutral_prod_def mult_prod_def by (simp add: neutl)
-qed
-
-end %quote
-
-text {*
-  \noindent Fully-fledged monoids are modelled by another subclass
-  which does not add new parameters but tightens the specification:
-*}
-
-class %quote monoid = monoidl +
-  assumes neutr: "x \<otimes> \<one> = x"
-
-instantiation %quote nat and int :: monoid 
-begin
-
-instance %quote proof
-  fix n :: nat
-  show "n \<otimes> \<one> = n"
-    unfolding neutral_nat_def by (induct n) simp_all
-next
-  fix k :: int
-  show "k \<otimes> \<one> = k"
-    unfolding neutral_int_def mult_int_def by simp
-qed
-
-end %quote
-
-instantiation %quote * :: (monoid, monoid) monoid
-begin
-
-instance %quote proof 
-  fix p :: "\<alpha>\<Colon>monoid \<times> \<beta>\<Colon>monoid"
-  show "p \<otimes> \<one> = p"
-    unfolding neutral_prod_def mult_prod_def by (simp add: neutr)
-qed
-
-end %quote
-
-text {*
-  \noindent To finish our small algebra example, we add a @{text group} class
-  with a corresponding instance:
-*}
-
-class %quote group = monoidl +
-  fixes inverse :: "\<alpha> \<Rightarrow> \<alpha>"    ("(_\<div>)" [1000] 999)
-  assumes invl: "x\<div> \<otimes> x = \<one>"
-
-instantiation %quote int :: group
-begin
-
-definition %quote
-  inverse_int_def: "i\<div> = - (i\<Colon>int)"
-
-instance %quote proof
-  fix i :: int
-  have "-i + i = 0" by simp
-  then show "i\<div> \<otimes> i = \<one>"
-    unfolding mult_int_def neutral_int_def inverse_int_def .
-qed
-
-end %quote
-
-
-section {* Type classes as locales *}
-
-subsection {* A look behind the scene *}
-
-text {*
-  The example above gives an impression how Isar type classes work
-  in practice.  As stated in the introduction, classes also provide
-  a link to Isar's locale system.  Indeed, the logical core of a class
-  is nothing else than a locale:
-*}
-
-class %quote idem =
-  fixes f :: "\<alpha> \<Rightarrow> \<alpha>"
-  assumes idem: "f (f x) = f x"
-
-text {*
-  \noindent essentially introduces the locale
-*} setup %invisible {* Sign.add_path "foo" *}
-
-locale %quote idem =
-  fixes f :: "\<alpha> \<Rightarrow> \<alpha>"
-  assumes idem: "f (f x) = f x"
-
-text {* \noindent together with corresponding constant(s): *}
-
-consts %quote f :: "\<alpha> \<Rightarrow> \<alpha>"
-
-text {*
-  \noindent The connection to the type system is done by means
-  of a primitive axclass
-*} setup %invisible {* Sign.add_path "foo" *}
-
-axclass %quote idem < type
-  idem: "f (f x) = f x" setup %invisible {* Sign.parent_path *}
-
-text {* \noindent together with a corresponding interpretation: *}
-
-interpretation %quote idem_class:
-  idem "f \<Colon> (\<alpha>\<Colon>idem) \<Rightarrow> \<alpha>"
-proof qed (rule idem)
-
-text {*
-  \noindent This gives you at hand the full power of the Isabelle module system;
-  conclusions in locale @{text idem} are implicitly propagated
-  to class @{text idem}.
-*} setup %invisible {* Sign.parent_path *}
-
-subsection {* Abstract reasoning *}
-
-text {*
-  Isabelle locales enable reasoning at a general level, while results
-  are implicitly transferred to all instances.  For example, we can
-  now establish the @{text "left_cancel"} lemma for groups, which
-  states that the function @{text "(x \<otimes>)"} is injective:
-*}
-
-lemma %quote (in group) left_cancel: "x \<otimes> y = x \<otimes> z \<longleftrightarrow> y = z"
-proof
-  assume "x \<otimes> y = x \<otimes> z"
-  then have "x\<div> \<otimes> (x \<otimes> y) = x\<div> \<otimes> (x \<otimes> z)" by simp
-  then have "(x\<div> \<otimes> x) \<otimes> y = (x\<div> \<otimes> x) \<otimes> z" using assoc by simp
-  then show "y = z" using neutl and invl by simp
-next
-  assume "y = z"
-  then show "x \<otimes> y = x \<otimes> z" by simp
-qed
-
-text {*
-  \noindent Here the \qt{@{keyword "in"} @{class group}} target specification
-  indicates that the result is recorded within that context for later
-  use.  This local theorem is also lifted to the global one @{fact
-  "group.left_cancel:"} @{prop [source] "\<And>x y z \<Colon> \<alpha>\<Colon>group. x \<otimes> y = x \<otimes>
-  z \<longleftrightarrow> y = z"}.  Since type @{text "int"} has been made an instance of
-  @{text "group"} before, we may refer to that fact as well: @{prop
-  [source] "\<And>x y z \<Colon> int. x \<otimes> y = x \<otimes> z \<longleftrightarrow> y = z"}.
-*}
-
-
-subsection {* Derived definitions *}
-
-text {*
-  Isabelle locales support a concept of local definitions
-  in locales:
-*}
-
-primrec %quote (in monoid) pow_nat :: "nat \<Rightarrow> \<alpha> \<Rightarrow> \<alpha>" where
-  "pow_nat 0 x = \<one>"
-  | "pow_nat (Suc n) x = x \<otimes> pow_nat n x"
-
-text {*
-  \noindent If the locale @{text group} is also a class, this local
-  definition is propagated onto a global definition of
-  @{term [source] "pow_nat \<Colon> nat \<Rightarrow> \<alpha>\<Colon>monoid \<Rightarrow> \<alpha>\<Colon>monoid"}
-  with corresponding theorems
-
-  @{thm pow_nat.simps [no_vars]}.
-
-  \noindent As you can see from this example, for local
-  definitions you may use any specification tool
-  which works together with locales (e.g. \cite{krauss2006}).
-*}
-
-
-subsection {* A functor analogy *}
-
-text {*
-  We introduced Isar classes by analogy to type classes
-  functional programming;  if we reconsider this in the
-  context of what has been said about type classes and locales,
-  we can drive this analogy further by stating that type
-  classes essentially correspond to functors which have
-  a canonical interpretation as type classes.
-  Anyway, there is also the possibility of other interpretations.
-  For example, also @{text list}s form a monoid with
-  @{text append} and @{term "[]"} as operations, but it
-  seems inappropriate to apply to lists
-  the same operations as for genuinely algebraic types.
-  In such a case, we simply can do a particular interpretation
-  of monoids for lists:
-*}
-
-interpretation %quote list_monoid!: monoid append "[]"
-  proof qed auto
-
-text {*
-  \noindent This enables us to apply facts on monoids
-  to lists, e.g. @{thm list_monoid.neutl [no_vars]}.
-
-  When using this interpretation pattern, it may also
-  be appropriate to map derived definitions accordingly:
-*}
-
-primrec %quote replicate :: "nat \<Rightarrow> \<alpha> list \<Rightarrow> \<alpha> list" where
-  "replicate 0 _ = []"
-  | "replicate (Suc n) xs = xs @ replicate n xs"
-
-interpretation %quote list_monoid!: monoid append "[]" where
-  "monoid.pow_nat append [] = replicate"
-proof -
-  interpret monoid append "[]" ..
-  show "monoid.pow_nat append [] = replicate"
-  proof
-    fix n
-    show "monoid.pow_nat append [] n = replicate n"
-      by (induct n) auto
-  qed
-qed intro_locales
-
-
-subsection {* Additional subclass relations *}
-
-text {*
-  Any @{text "group"} is also a @{text "monoid"};  this
-  can be made explicit by claiming an additional
-  subclass relation,
-  together with a proof of the logical difference:
-*}
-
-subclass %quote (in group) monoid
-proof
-  fix x
-  from invl have "x\<div> \<otimes> x = \<one>" by simp
-  with assoc [symmetric] neutl invl have "x\<div> \<otimes> (x \<otimes> \<one>) = x\<div> \<otimes> x" by simp
-  with left_cancel show "x \<otimes> \<one> = x" by simp
-qed
-
-text {*
-  \noindent The logical proof is carried out on the locale level.
-  Afterwards it is propagated
-  to the type system, making @{text group} an instance of
-  @{text monoid} by adding an additional edge
-  to the graph of subclass relations
-  (cf.\ \figref{fig:subclass}).
-
-  \begin{figure}[htbp]
-   \begin{center}
-     \small
-     \unitlength 0.6mm
-     \begin{picture}(40,60)(0,0)
-       \put(20,60){\makebox(0,0){@{text semigroup}}}
-       \put(20,40){\makebox(0,0){@{text monoidl}}}
-       \put(00,20){\makebox(0,0){@{text monoid}}}
-       \put(40,00){\makebox(0,0){@{text group}}}
-       \put(20,55){\vector(0,-1){10}}
-       \put(15,35){\vector(-1,-1){10}}
-       \put(25,35){\vector(1,-3){10}}
-     \end{picture}
-     \hspace{8em}
-     \begin{picture}(40,60)(0,0)
-       \put(20,60){\makebox(0,0){@{text semigroup}}}
-       \put(20,40){\makebox(0,0){@{text monoidl}}}
-       \put(00,20){\makebox(0,0){@{text monoid}}}
-       \put(40,00){\makebox(0,0){@{text group}}}
-       \put(20,55){\vector(0,-1){10}}
-       \put(15,35){\vector(-1,-1){10}}
-       \put(05,15){\vector(3,-1){30}}
-     \end{picture}
-     \caption{Subclass relationship of monoids and groups:
-        before and after establishing the relationship
-        @{text "group \<subseteq> monoid"};  transitive edges are left out.}
-     \label{fig:subclass}
-   \end{center}
-  \end{figure}
-7
-  For illustration, a derived definition
-  in @{text group} which uses @{text pow_nat}:
-*}
-
-definition %quote (in group) pow_int :: "int \<Rightarrow> \<alpha> \<Rightarrow> \<alpha>" where
-  "pow_int k x = (if k >= 0
-    then pow_nat (nat k) x
-    else (pow_nat (nat (- k)) x)\<div>)"
-
-text {*
-  \noindent yields the global definition of
-  @{term [source] "pow_int \<Colon> int \<Rightarrow> \<alpha>\<Colon>group \<Rightarrow> \<alpha>\<Colon>group"}
-  with the corresponding theorem @{thm pow_int_def [no_vars]}.
-*}
-
-subsection {* A note on syntax *}
-
-text {*
-  As a commodity, class context syntax allows to refer
-  to local class operations and their global counterparts
-  uniformly;  type inference resolves ambiguities.  For example:
-*}
-
-context %quote semigroup
-begin
-
-term %quote "x \<otimes> y" -- {* example 1 *}
-term %quote "(x\<Colon>nat) \<otimes> y" -- {* example 2 *}
-
-end  %quote
-
-term %quote "x \<otimes> y" -- {* example 3 *}
-
-text {*
-  \noindent Here in example 1, the term refers to the local class operation
-  @{text "mult [\<alpha>]"}, whereas in example 2 the type constraint
-  enforces the global class operation @{text "mult [nat]"}.
-  In the global context in example 3, the reference is
-  to the polymorphic global class operation @{text "mult [?\<alpha> \<Colon> semigroup]"}.
-*}
-
-section {* Further issues *}
-
-subsection {* Type classes and code generation *}
-
-text {*
-  Turning back to the first motivation for type classes,
-  namely overloading, it is obvious that overloading
-  stemming from @{command class} statements and
-  @{command instantiation}
-  targets naturally maps to Haskell type classes.
-  The code generator framework \cite{isabelle-codegen} 
-  takes this into account.  Concerning target languages
-  lacking type classes (e.g.~SML), type classes
-  are implemented by explicit dictionary construction.
-  As example, let's go back to the power function:
-*}
-
-definition %quote example :: int where
-  "example = pow_int 10 (-2)"
-
-text {*
-  \noindent This maps to Haskell as:
-*}
-
-text %quote {*@{code_stmts example (Haskell)}*}
-
-text {*
-  \noindent The whole code in SML with explicit dictionary passing:
-*}
-
-text %quote {*@{code_stmts example (SML)}*}
-
-subsection {* Inspecting the type class universe *}
-
-text {*
-  To facilitate orientation in complex subclass structures,
-  two diagnostics commands are provided:
-
-  \begin{description}
-
-    \item[@{command "print_classes"}] print a list of all classes
-      together with associated operations etc.
-
-    \item[@{command "class_deps"}] visualizes the subclass relation
-      between all classes as a Hasse diagram.
-
-  \end{description}
-*}
-
-end