doc-src/IsarAdvanced/Codegen/Thy/document/Program.tex
changeset 30226 2f4684e2ea95
parent 30202 2775062fd3a9
child 30227 853abb4853cc
--- a/doc-src/IsarAdvanced/Codegen/Thy/document/Program.tex	Mon Mar 02 16:58:39 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1250 +0,0 @@
-%
-\begin{isabellebody}%
-\def\isabellecontext{Program}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isatagtheory
-\isacommand{theory}\isamarkupfalse%
-\ Program\isanewline
-\isakeyword{imports}\ Introduction\isanewline
-\isakeyword{begin}%
-\endisatagtheory
-{\isafoldtheory}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isamarkupsection{Turning Theories into Programs \label{sec:program}%
-}
-\isamarkuptrue%
-%
-\isamarkupsubsection{The \isa{Isabelle{\isacharslash}HOL} default setup%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-We have already seen how by default equations stemming from
-  \hyperlink{command.definition}{\mbox{\isa{\isacommand{definition}}}}/\hyperlink{command.primrec}{\mbox{\isa{\isacommand{primrec}}}}/\hyperlink{command.fun}{\mbox{\isa{\isacommand{fun}}}}
-  statements are used for code generation.  This default behaviour
-  can be changed, e.g. by providing different code equations.
-  All kinds of customisation shown in this section is \emph{safe}
-  in the sense that the user does not have to worry about
-  correctness -- all programs generatable that way are partially
-  correct.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Selecting code equations%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-Coming back to our introductory example, we
-  could provide an alternative code equations for \isa{dequeue}
-  explicitly:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{lemma}\isamarkupfalse%
-\ {\isacharbrackleft}code{\isacharbrackright}{\isacharcolon}\isanewline
-\ \ {\isachardoublequoteopen}dequeue\ {\isacharparenleft}AQueue\ xs\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\ {\isacharequal}\isanewline
-\ \ \ \ \ {\isacharparenleft}if\ xs\ {\isacharequal}\ {\isacharbrackleft}{\isacharbrackright}\ then\ {\isacharparenleft}None{\isacharcomma}\ AQueue\ {\isacharbrackleft}{\isacharbrackright}\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\isanewline
-\ \ \ \ \ \ \ else\ dequeue\ {\isacharparenleft}AQueue\ {\isacharbrackleft}{\isacharbrackright}\ {\isacharparenleft}rev\ xs{\isacharparenright}{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ {\isachardoublequoteopen}dequeue\ {\isacharparenleft}AQueue\ xs\ {\isacharparenleft}y\ {\isacharhash}\ ys{\isacharparenright}{\isacharparenright}\ {\isacharequal}\isanewline
-\ \ \ \ \ {\isacharparenleft}Some\ y{\isacharcomma}\ AQueue\ xs\ ys{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}cases\ xs{\isacharcomma}\ simp{\isacharunderscore}all{\isacharparenright}\ {\isacharparenleft}cases\ {\isachardoublequoteopen}rev\ xs{\isachardoublequoteclose}{\isacharcomma}\ simp{\isacharunderscore}all{\isacharparenright}%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent The annotation \isa{{\isacharbrackleft}code{\isacharbrackright}} is an \isa{Isar}
-  \isa{attribute} which states that the given theorems should be
-  considered as code equations for a \isa{fun} statement --
-  the corresponding constant is determined syntactically.  The resulting code:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-%
-\begin{isamarkuptext}%
-\isatypewriter%
-\noindent%
-\hspace*{0pt}dequeue ::~forall a.~Queue a -> (Maybe a,~Queue a);\\
-\hspace*{0pt}dequeue (AQueue xs (y :~ys)) = (Just y,~AQueue xs ys);\\
-\hspace*{0pt}dequeue (AQueue xs []) =\\
-\hspace*{0pt} ~(if nulla xs then (Nothing,~AQueue [] [])\\
-\hspace*{0pt} ~~~else dequeue (AQueue [] (rev xs)));%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent You may note that the equality test \isa{xs\ {\isacharequal}\ {\isacharbrackleft}{\isacharbrackright}} has been
-  replaced by the predicate \isa{null\ xs}.  This is due to the default
-  setup in the \qn{preprocessor} to be discussed further below (\secref{sec:preproc}).
-
-  Changing the default constructor set of datatypes is also
-  possible.  See \secref{sec:datatypes} for an example.
-
-  As told in \secref{sec:concept}, code generation is based
-  on a structured collection of code theorems.
-  For explorative purpose, this collection
-  may be inspected using the \hyperlink{command.code-thms}{\mbox{\isa{\isacommand{code{\isacharunderscore}thms}}}} command:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{code{\isacharunderscore}thms}\isamarkupfalse%
-\ dequeue%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent prints a table with \emph{all} code equations
-  for \isa{dequeue}, including
-  \emph{all} code equations those equations depend
-  on recursively.
-  
-  Similarly, the \hyperlink{command.code-deps}{\mbox{\isa{\isacommand{code{\isacharunderscore}deps}}}} command shows a graph
-  visualising dependencies between code equations.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{\isa{class} and \isa{instantiation}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-Concerning type classes and code generation, let us examine an example
-  from abstract algebra:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{class}\isamarkupfalse%
-\ semigroup\ {\isacharequal}\isanewline
-\ \ \isakeyword{fixes}\ mult\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequoteclose}\ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequoteopen}{\isasymotimes}{\isachardoublequoteclose}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isanewline
-\ \ \isakeyword{assumes}\ assoc{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}x\ {\isasymotimes}\ y{\isacharparenright}\ {\isasymotimes}\ z\ {\isacharequal}\ x\ {\isasymotimes}\ {\isacharparenleft}y\ {\isasymotimes}\ z{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\isanewline
-\isacommand{class}\isamarkupfalse%
-\ monoid\ {\isacharequal}\ semigroup\ {\isacharplus}\isanewline
-\ \ \isakeyword{fixes}\ neutral\ {\isacharcolon}{\isacharcolon}\ {\isacharprime}a\ {\isacharparenleft}{\isachardoublequoteopen}{\isasymone}{\isachardoublequoteclose}{\isacharparenright}\isanewline
-\ \ \isakeyword{assumes}\ neutl{\isacharcolon}\ {\isachardoublequoteopen}{\isasymone}\ {\isasymotimes}\ x\ {\isacharequal}\ x{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isakeyword{and}\ neutr{\isacharcolon}\ {\isachardoublequoteopen}x\ {\isasymotimes}\ {\isasymone}\ {\isacharequal}\ x{\isachardoublequoteclose}\isanewline
-\isanewline
-\isacommand{instantiation}\isamarkupfalse%
-\ nat\ {\isacharcolon}{\isacharcolon}\ monoid\isanewline
-\isakeyword{begin}\isanewline
-\isanewline
-\isacommand{primrec}\isamarkupfalse%
-\ mult{\isacharunderscore}nat\ \isakeyword{where}\isanewline
-\ \ \ \ {\isachardoublequoteopen}{\isadigit{0}}\ {\isasymotimes}\ n\ {\isacharequal}\ {\isacharparenleft}{\isadigit{0}}{\isasymColon}nat{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ {\isacharbar}\ {\isachardoublequoteopen}Suc\ m\ {\isasymotimes}\ n\ {\isacharequal}\ n\ {\isacharplus}\ m\ {\isasymotimes}\ n{\isachardoublequoteclose}\isanewline
-\isanewline
-\isacommand{definition}\isamarkupfalse%
-\ neutral{\isacharunderscore}nat\ \isakeyword{where}\isanewline
-\ \ {\isachardoublequoteopen}{\isasymone}\ {\isacharequal}\ Suc\ {\isadigit{0}}{\isachardoublequoteclose}\isanewline
-\isanewline
-\isacommand{lemma}\isamarkupfalse%
-\ add{\isacharunderscore}mult{\isacharunderscore}distrib{\isacharcolon}\isanewline
-\ \ \isakeyword{fixes}\ n\ m\ q\ {\isacharcolon}{\isacharcolon}\ nat\isanewline
-\ \ \isakeyword{shows}\ {\isachardoublequoteopen}{\isacharparenleft}n\ {\isacharplus}\ m{\isacharparenright}\ {\isasymotimes}\ q\ {\isacharequal}\ n\ {\isasymotimes}\ q\ {\isacharplus}\ m\ {\isasymotimes}\ q{\isachardoublequoteclose}\isanewline
-\ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}induct\ n{\isacharparenright}\ simp{\isacharunderscore}all\isanewline
-\isanewline
-\isacommand{instance}\isamarkupfalse%
-\ \isacommand{proof}\isamarkupfalse%
-\isanewline
-\ \ \isacommand{fix}\isamarkupfalse%
-\ m\ n\ q\ {\isacharcolon}{\isacharcolon}\ nat\isanewline
-\ \ \isacommand{show}\isamarkupfalse%
-\ {\isachardoublequoteopen}m\ {\isasymotimes}\ n\ {\isasymotimes}\ q\ {\isacharequal}\ m\ {\isasymotimes}\ {\isacharparenleft}n\ {\isasymotimes}\ q{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}induct\ m{\isacharparenright}\ {\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}\ add{\isacharunderscore}mult{\isacharunderscore}distrib{\isacharparenright}\isanewline
-\ \ \isacommand{show}\isamarkupfalse%
-\ {\isachardoublequoteopen}{\isasymone}\ {\isasymotimes}\ n\ {\isacharequal}\ n{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp\ add{\isacharcolon}\ neutral{\isacharunderscore}nat{\isacharunderscore}def{\isacharparenright}\isanewline
-\ \ \isacommand{show}\isamarkupfalse%
-\ {\isachardoublequoteopen}m\ {\isasymotimes}\ {\isasymone}\ {\isacharequal}\ m{\isachardoublequoteclose}\isanewline
-\ \ \ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}induct\ m{\isacharparenright}\ {\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}\ neutral{\isacharunderscore}nat{\isacharunderscore}def{\isacharparenright}\isanewline
-\isacommand{qed}\isamarkupfalse%
-\isanewline
-\isanewline
-\isacommand{end}\isamarkupfalse%
-%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent We define the natural operation of the natural numbers
-  on monoids:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{primrec}\isamarkupfalse%
-\ {\isacharparenleft}\isakeyword{in}\ monoid{\isacharparenright}\ pow\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}nat\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequoteclose}\ \isakeyword{where}\isanewline
-\ \ \ \ {\isachardoublequoteopen}pow\ {\isadigit{0}}\ a\ {\isacharequal}\ {\isasymone}{\isachardoublequoteclose}\isanewline
-\ \ {\isacharbar}\ {\isachardoublequoteopen}pow\ {\isacharparenleft}Suc\ n{\isacharparenright}\ a\ {\isacharequal}\ a\ {\isasymotimes}\ pow\ n\ a{\isachardoublequoteclose}%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent This we use to define the discrete exponentiation function:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{definition}\isamarkupfalse%
-\ bexp\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}nat\ {\isasymRightarrow}\ nat{\isachardoublequoteclose}\ \isakeyword{where}\isanewline
-\ \ {\isachardoublequoteopen}bexp\ n\ {\isacharequal}\ pow\ n\ {\isacharparenleft}Suc\ {\isacharparenleft}Suc\ {\isadigit{0}}{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent The corresponding code:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-%
-\begin{isamarkuptext}%
-\isatypewriter%
-\noindent%
-\hspace*{0pt}module Example where {\char123}\\
-\hspace*{0pt}\\
-\hspace*{0pt}\\
-\hspace*{0pt}data Nat = Zero{\char95}nat | Suc Nat;\\
-\hspace*{0pt}\\
-\hspace*{0pt}class Semigroup a where {\char123}\\
-\hspace*{0pt} ~mult ::~a -> a -> a;\\
-\hspace*{0pt}{\char125};\\
-\hspace*{0pt}\\
-\hspace*{0pt}class (Semigroup a) => Monoid a where {\char123}\\
-\hspace*{0pt} ~neutral ::~a;\\
-\hspace*{0pt}{\char125};\\
-\hspace*{0pt}\\
-\hspace*{0pt}pow ::~forall a.~(Monoid a) => Nat -> a -> a;\\
-\hspace*{0pt}pow Zero{\char95}nat a = neutral;\\
-\hspace*{0pt}pow (Suc n) a = mult a (pow n a);\\
-\hspace*{0pt}\\
-\hspace*{0pt}plus{\char95}nat ::~Nat -> Nat -> Nat;\\
-\hspace*{0pt}plus{\char95}nat (Suc m) n = plus{\char95}nat m (Suc n);\\
-\hspace*{0pt}plus{\char95}nat Zero{\char95}nat n = n;\\
-\hspace*{0pt}\\
-\hspace*{0pt}neutral{\char95}nat ::~Nat;\\
-\hspace*{0pt}neutral{\char95}nat = Suc Zero{\char95}nat;\\
-\hspace*{0pt}\\
-\hspace*{0pt}mult{\char95}nat ::~Nat -> Nat -> Nat;\\
-\hspace*{0pt}mult{\char95}nat Zero{\char95}nat n = Zero{\char95}nat;\\
-\hspace*{0pt}mult{\char95}nat (Suc m) n = plus{\char95}nat n (mult{\char95}nat m n);\\
-\hspace*{0pt}\\
-\hspace*{0pt}instance Semigroup Nat where {\char123}\\
-\hspace*{0pt} ~mult = mult{\char95}nat;\\
-\hspace*{0pt}{\char125};\\
-\hspace*{0pt}\\
-\hspace*{0pt}instance Monoid Nat where {\char123}\\
-\hspace*{0pt} ~neutral = neutral{\char95}nat;\\
-\hspace*{0pt}{\char125};\\
-\hspace*{0pt}\\
-\hspace*{0pt}bexp ::~Nat -> Nat;\\
-\hspace*{0pt}bexp n = pow n (Suc (Suc Zero{\char95}nat));\\
-\hspace*{0pt}\\
-\hspace*{0pt}{\char125}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent This is a convenient place to show how explicit dictionary construction
-  manifests in generated code (here, the same example in \isa{SML}):%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-%
-\begin{isamarkuptext}%
-\isatypewriter%
-\noindent%
-\hspace*{0pt}structure Example = \\
-\hspace*{0pt}struct\\
-\hspace*{0pt}\\
-\hspace*{0pt}datatype nat = Zero{\char95}nat | Suc of nat;\\
-\hspace*{0pt}\\
-\hspace*{0pt}type 'a semigroup = {\char123}mult :~'a -> 'a -> 'a{\char125};\\
-\hspace*{0pt}fun mult (A{\char95}:'a semigroup) = {\char35}mult A{\char95};\\
-\hspace*{0pt}\\
-\hspace*{0pt}type 'a monoid = {\char123}Program{\char95}{\char95}semigroup{\char95}monoid :~'a semigroup,~neutral :~'a{\char125};\\
-\hspace*{0pt}fun semigroup{\char95}monoid (A{\char95}:'a monoid) = {\char35}Program{\char95}{\char95}semigroup{\char95}monoid A{\char95};\\
-\hspace*{0pt}fun neutral (A{\char95}:'a monoid) = {\char35}neutral A{\char95};\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun pow A{\char95}~Zero{\char95}nat a = neutral A{\char95}\\
-\hspace*{0pt} ~| pow A{\char95}~(Suc n) a = mult (semigroup{\char95}monoid A{\char95}) a (pow A{\char95}~n a);\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun plus{\char95}nat (Suc m) n = plus{\char95}nat m (Suc n)\\
-\hspace*{0pt} ~| plus{\char95}nat Zero{\char95}nat n = n;\\
-\hspace*{0pt}\\
-\hspace*{0pt}val neutral{\char95}nat :~nat = Suc Zero{\char95}nat\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun mult{\char95}nat Zero{\char95}nat n = Zero{\char95}nat\\
-\hspace*{0pt} ~| mult{\char95}nat (Suc m) n = plus{\char95}nat n (mult{\char95}nat m n);\\
-\hspace*{0pt}\\
-\hspace*{0pt}val semigroup{\char95}nat = {\char123}mult = mult{\char95}nat{\char125}~:~nat semigroup;\\
-\hspace*{0pt}\\
-\hspace*{0pt}val monoid{\char95}nat =\\
-\hspace*{0pt} ~{\char123}Program{\char95}{\char95}semigroup{\char95}monoid = semigroup{\char95}nat,~neutral = neutral{\char95}nat{\char125}~:\\
-\hspace*{0pt} ~nat monoid;\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun bexp n = pow monoid{\char95}nat n (Suc (Suc Zero{\char95}nat));\\
-\hspace*{0pt}\\
-\hspace*{0pt}end;~(*struct Example*)%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent Note the parameters with trailing underscore (\verb|A_|)
-    which are the dictionary parameters.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{The preprocessor \label{sec:preproc}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-Before selected function theorems are turned into abstract
-  code, a chain of definitional transformation steps is carried
-  out: \emph{preprocessing}.  In essence, the preprocessor
-  consists of two components: a \emph{simpset} and \emph{function transformers}.
-
-  The \emph{simpset} allows to employ the full generality of the Isabelle
-  simplifier.  Due to the interpretation of theorems
-  as code equations, rewrites are applied to the right
-  hand side and the arguments of the left hand side of an
-  equation, but never to the constant heading the left hand side.
-  An important special case are \emph{inline theorems} which may be
-  declared and undeclared using the
-  \emph{code inline} or \emph{code inline del} attribute respectively.
-
-  Some common applications:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\begin{itemize}
-%
-\begin{isamarkuptext}%
-\item replacing non-executable constructs by executable ones:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{lemma}\isamarkupfalse%
-\ {\isacharbrackleft}code\ inline{\isacharbrackright}{\isacharcolon}\isanewline
-\ \ {\isachardoublequoteopen}x\ {\isasymin}\ set\ xs\ {\isasymlongleftrightarrow}\ x\ mem\ xs{\isachardoublequoteclose}\ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}induct\ xs{\isacharparenright}\ simp{\isacharunderscore}all%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\item eliminating superfluous constants:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{lemma}\isamarkupfalse%
-\ {\isacharbrackleft}code\ inline{\isacharbrackright}{\isacharcolon}\isanewline
-\ \ {\isachardoublequoteopen}{\isadigit{1}}\ {\isacharequal}\ Suc\ {\isadigit{0}}{\isachardoublequoteclose}\ \isacommand{by}\isamarkupfalse%
-\ simp%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\item replacing executable but inconvenient constructs:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{lemma}\isamarkupfalse%
-\ {\isacharbrackleft}code\ inline{\isacharbrackright}{\isacharcolon}\isanewline
-\ \ {\isachardoublequoteopen}xs\ {\isacharequal}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymlongleftrightarrow}\ List{\isachardot}null\ xs{\isachardoublequoteclose}\ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}induct\ xs{\isacharparenright}\ simp{\isacharunderscore}all%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\end{itemize}
-%
-\begin{isamarkuptext}%
-\noindent \emph{Function transformers} provide a very general interface,
-  transforming a list of function theorems to another
-  list of function theorems, provided that neither the heading
-  constant nor its type change.  The \isa{{\isadigit{0}}} / \isa{Suc}
-  pattern elimination implemented in
-  theory \isa{Efficient{\isacharunderscore}Nat} (see \secref{eff_nat}) uses this
-  interface.
-
-  \noindent The current setup of the preprocessor may be inspected using
-  the \hyperlink{command.print-codesetup}{\mbox{\isa{\isacommand{print{\isacharunderscore}codesetup}}}} command.
-  \hyperlink{command.code-thms}{\mbox{\isa{\isacommand{code{\isacharunderscore}thms}}}} provides a convenient
-  mechanism to inspect the impact of a preprocessor setup
-  on code equations.
-
-  \begin{warn}
-    The attribute \emph{code unfold}
-    associated with the \isa{SML\ code\ generator} also applies to
-    the \isa{generic\ code\ generator}:
-    \emph{code unfold} implies \emph{code inline}.
-  \end{warn}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Datatypes \label{sec:datatypes}%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-Conceptually, any datatype is spanned by a set of
-  \emph{constructors} of type \isa{{\isasymtau}\ {\isacharequal}\ {\isasymdots}\ {\isasymRightarrow}\ {\isasymkappa}\ {\isasymalpha}\isactrlisub {\isadigit{1}}\ {\isasymdots}\ {\isasymalpha}\isactrlisub n} where \isa{{\isacharbraceleft}{\isasymalpha}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlisub n{\isacharbraceright}} is exactly the set of \emph{all} type variables in
-  \isa{{\isasymtau}}.  The HOL datatype package by default registers any new
-  datatype in the table of datatypes, which may be inspected using the
-  \hyperlink{command.print-codesetup}{\mbox{\isa{\isacommand{print{\isacharunderscore}codesetup}}}} command.
-
-  In some cases, it is appropriate to alter or extend this table.  As
-  an example, we will develop an alternative representation of the
-  queue example given in \secref{sec:intro}.  The amortised
-  representation is convenient for generating code but exposes its
-  \qt{implementation} details, which may be cumbersome when proving
-  theorems about it.  Therefore, here a simple, straightforward
-  representation of queues:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{datatype}\isamarkupfalse%
-\ {\isacharprime}a\ queue\ {\isacharequal}\ Queue\ {\isachardoublequoteopen}{\isacharprime}a\ list{\isachardoublequoteclose}\isanewline
-\isanewline
-\isacommand{definition}\isamarkupfalse%
-\ empty\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a\ queue{\isachardoublequoteclose}\ \isakeyword{where}\isanewline
-\ \ {\isachardoublequoteopen}empty\ {\isacharequal}\ Queue\ {\isacharbrackleft}{\isacharbrackright}{\isachardoublequoteclose}\isanewline
-\isanewline
-\isacommand{primrec}\isamarkupfalse%
-\ enqueue\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ queue\ {\isasymRightarrow}\ {\isacharprime}a\ queue{\isachardoublequoteclose}\ \isakeyword{where}\isanewline
-\ \ {\isachardoublequoteopen}enqueue\ x\ {\isacharparenleft}Queue\ xs{\isacharparenright}\ {\isacharequal}\ Queue\ {\isacharparenleft}xs\ {\isacharat}\ {\isacharbrackleft}x{\isacharbrackright}{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\isanewline
-\isacommand{fun}\isamarkupfalse%
-\ dequeue\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a\ queue\ {\isasymRightarrow}\ {\isacharprime}a\ option\ {\isasymtimes}\ {\isacharprime}a\ queue{\isachardoublequoteclose}\ \isakeyword{where}\isanewline
-\ \ \ \ {\isachardoublequoteopen}dequeue\ {\isacharparenleft}Queue\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}None{\isacharcomma}\ Queue\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ {\isacharbar}\ {\isachardoublequoteopen}dequeue\ {\isacharparenleft}Queue\ {\isacharparenleft}x\ {\isacharhash}\ xs{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}Some\ x{\isacharcomma}\ Queue\ xs{\isacharparenright}{\isachardoublequoteclose}%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent This we can use directly for proving;  for executing,
-  we provide an alternative characterisation:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{definition}\isamarkupfalse%
-\ AQueue\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ queue{\isachardoublequoteclose}\ \isakeyword{where}\isanewline
-\ \ {\isachardoublequoteopen}AQueue\ xs\ ys\ {\isacharequal}\ Queue\ {\isacharparenleft}ys\ {\isacharat}\ rev\ xs{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\isanewline
-\isacommand{code{\isacharunderscore}datatype}\isamarkupfalse%
-\ AQueue%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent Here we define a \qt{constructor} \isa{Program{\isachardot}AQueue} which
-  is defined in terms of \isa{Queue} and interprets its arguments
-  according to what the \emph{content} of an amortised queue is supposed
-  to be.  Equipped with this, we are able to prove the following equations
-  for our primitive queue operations which \qt{implement} the simple
-  queues in an amortised fashion:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{lemma}\isamarkupfalse%
-\ empty{\isacharunderscore}AQueue\ {\isacharbrackleft}code{\isacharbrackright}{\isacharcolon}\isanewline
-\ \ {\isachardoublequoteopen}empty\ {\isacharequal}\ AQueue\ {\isacharbrackleft}{\isacharbrackright}\ {\isacharbrackleft}{\isacharbrackright}{\isachardoublequoteclose}\isanewline
-\ \ \isacommand{unfolding}\isamarkupfalse%
-\ AQueue{\isacharunderscore}def\ empty{\isacharunderscore}def\ \isacommand{by}\isamarkupfalse%
-\ simp\isanewline
-\isanewline
-\isacommand{lemma}\isamarkupfalse%
-\ enqueue{\isacharunderscore}AQueue\ {\isacharbrackleft}code{\isacharbrackright}{\isacharcolon}\isanewline
-\ \ {\isachardoublequoteopen}enqueue\ x\ {\isacharparenleft}AQueue\ xs\ ys{\isacharparenright}\ {\isacharequal}\ AQueue\ {\isacharparenleft}x\ {\isacharhash}\ xs{\isacharparenright}\ ys{\isachardoublequoteclose}\isanewline
-\ \ \isacommand{unfolding}\isamarkupfalse%
-\ AQueue{\isacharunderscore}def\ \isacommand{by}\isamarkupfalse%
-\ simp\isanewline
-\isanewline
-\isacommand{lemma}\isamarkupfalse%
-\ dequeue{\isacharunderscore}AQueue\ {\isacharbrackleft}code{\isacharbrackright}{\isacharcolon}\isanewline
-\ \ {\isachardoublequoteopen}dequeue\ {\isacharparenleft}AQueue\ xs\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\ {\isacharequal}\isanewline
-\ \ \ \ {\isacharparenleft}if\ xs\ {\isacharequal}\ {\isacharbrackleft}{\isacharbrackright}\ then\ {\isacharparenleft}None{\isacharcomma}\ AQueue\ {\isacharbrackleft}{\isacharbrackright}\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\isanewline
-\ \ \ \ else\ dequeue\ {\isacharparenleft}AQueue\ {\isacharbrackleft}{\isacharbrackright}\ {\isacharparenleft}rev\ xs{\isacharparenright}{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ {\isachardoublequoteopen}dequeue\ {\isacharparenleft}AQueue\ xs\ {\isacharparenleft}y\ {\isacharhash}\ ys{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}Some\ y{\isacharcomma}\ AQueue\ xs\ ys{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ \isacommand{unfolding}\isamarkupfalse%
-\ AQueue{\isacharunderscore}def\ \isacommand{by}\isamarkupfalse%
-\ simp{\isacharunderscore}all%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent For completeness, we provide a substitute for the
-  \isa{case} combinator on queues:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{definition}\isamarkupfalse%
-\isanewline
-\ \ aqueue{\isacharunderscore}case{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequoteopen}aqueue{\isacharunderscore}case\ {\isacharequal}\ queue{\isacharunderscore}case{\isachardoublequoteclose}\isanewline
-\isanewline
-\isacommand{lemma}\isamarkupfalse%
-\ aqueue{\isacharunderscore}case\ {\isacharbrackleft}code{\isacharcomma}\ code\ inline{\isacharbrackright}{\isacharcolon}\isanewline
-\ \ {\isachardoublequoteopen}queue{\isacharunderscore}case\ {\isacharequal}\ aqueue{\isacharunderscore}case{\isachardoublequoteclose}\isanewline
-\ \ \isacommand{unfolding}\isamarkupfalse%
-\ aqueue{\isacharunderscore}case{\isacharunderscore}def\ \isacommand{{\isachardot}{\isachardot}}\isamarkupfalse%
-\isanewline
-\isanewline
-\isacommand{lemma}\isamarkupfalse%
-\ case{\isacharunderscore}AQueue\ {\isacharbrackleft}code{\isacharbrackright}{\isacharcolon}\isanewline
-\ \ {\isachardoublequoteopen}aqueue{\isacharunderscore}case\ f\ {\isacharparenleft}AQueue\ xs\ ys{\isacharparenright}\ {\isacharequal}\ f\ {\isacharparenleft}ys\ {\isacharat}\ rev\ xs{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ \isacommand{unfolding}\isamarkupfalse%
-\ aqueue{\isacharunderscore}case{\isacharunderscore}def\ AQueue{\isacharunderscore}def\ \isacommand{by}\isamarkupfalse%
-\ simp%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent The resulting code looks as expected:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-%
-\begin{isamarkuptext}%
-\isatypewriter%
-\noindent%
-\hspace*{0pt}structure Example = \\
-\hspace*{0pt}struct\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun foldl f a [] = a\\
-\hspace*{0pt} ~| foldl f a (x ::~xs) = foldl f (f a x) xs;\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun rev xs = foldl (fn xsa => fn x => x ::~xsa) [] xs;\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun null [] = true\\
-\hspace*{0pt} ~| null (x ::~xs) = false;\\
-\hspace*{0pt}\\
-\hspace*{0pt}datatype 'a queue = AQueue of 'a list * 'a list;\\
-\hspace*{0pt}\\
-\hspace*{0pt}val empty :~'a queue = AQueue ([],~[])\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun dequeue (AQueue (xs,~y ::~ys)) = (SOME y,~AQueue (xs,~ys))\\
-\hspace*{0pt} ~| dequeue (AQueue (xs,~[])) =\\
-\hspace*{0pt} ~~~(if null xs then (NONE,~AQueue ([],~[]))\\
-\hspace*{0pt} ~~~~~else dequeue (AQueue ([],~rev xs)));\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun enqueue x (AQueue (xs,~ys)) = AQueue (x ::~xs,~ys);\\
-\hspace*{0pt}\\
-\hspace*{0pt}end;~(*struct Example*)%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent From this example, it can be glimpsed that using own
-  constructor sets is a little delicate since it changes the set of
-  valid patterns for values of that type.  Without going into much
-  detail, here some practical hints:
-
-  \begin{itemize}
-
-    \item When changing the constructor set for datatypes, take care
-      to provide an alternative for the \isa{case} combinator
-      (e.g.~by replacing it using the preprocessor).
-
-    \item Values in the target language need not to be normalised --
-      different values in the target language may represent the same
-      value in the logic.
-
-    \item Usually, a good methodology to deal with the subtleties of
-      pattern matching is to see the type as an abstract type: provide
-      a set of operations which operate on the concrete representation
-      of the type, and derive further operations by combinations of
-      these primitive ones, without relying on a particular
-      representation.
-
-  \end{itemize}%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isamarkupsubsection{Equality and wellsortedness%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-Surely you have already noticed how equality is treated
-  by the code generator:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{primrec}\isamarkupfalse%
-\ collect{\isacharunderscore}duplicates\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list{\isachardoublequoteclose}\ \isakeyword{where}\isanewline
-\ \ {\isachardoublequoteopen}collect{\isacharunderscore}duplicates\ xs\ ys\ {\isacharbrackleft}{\isacharbrackright}\ {\isacharequal}\ xs{\isachardoublequoteclose}\isanewline
-\ \ {\isacharbar}\ {\isachardoublequoteopen}collect{\isacharunderscore}duplicates\ xs\ ys\ {\isacharparenleft}z{\isacharhash}zs{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}if\ z\ {\isasymin}\ set\ xs\isanewline
-\ \ \ \ \ \ then\ if\ z\ {\isasymin}\ set\ ys\isanewline
-\ \ \ \ \ \ \ \ then\ collect{\isacharunderscore}duplicates\ xs\ ys\ zs\isanewline
-\ \ \ \ \ \ \ \ else\ collect{\isacharunderscore}duplicates\ xs\ {\isacharparenleft}z{\isacharhash}ys{\isacharparenright}\ zs\isanewline
-\ \ \ \ \ \ else\ collect{\isacharunderscore}duplicates\ {\isacharparenleft}z{\isacharhash}xs{\isacharparenright}\ {\isacharparenleft}z{\isacharhash}ys{\isacharparenright}\ zs{\isacharparenright}{\isachardoublequoteclose}%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent The membership test during preprocessing is rewritten,
-  resulting in \isa{op\ mem}, which itself
-  performs an explicit equality check.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-%
-\begin{isamarkuptext}%
-\isatypewriter%
-\noindent%
-\hspace*{0pt}structure Example = \\
-\hspace*{0pt}struct\\
-\hspace*{0pt}\\
-\hspace*{0pt}type 'a eq = {\char123}eq :~'a -> 'a -> bool{\char125};\\
-\hspace*{0pt}fun eq (A{\char95}:'a eq) = {\char35}eq A{\char95};\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun eqop A{\char95}~a b = eq A{\char95}~a b;\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun member A{\char95}~x [] = false\\
-\hspace*{0pt} ~| member A{\char95}~x (y ::~ys) = eqop A{\char95}~x y orelse member A{\char95}~x ys;\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun collect{\char95}duplicates A{\char95}~xs ys [] = xs\\
-\hspace*{0pt} ~| collect{\char95}duplicates A{\char95}~xs ys (z ::~zs) =\\
-\hspace*{0pt} ~~~(if member A{\char95}~z xs\\
-\hspace*{0pt} ~~~~~then (if member A{\char95}~z ys then collect{\char95}duplicates A{\char95}~xs ys zs\\
-\hspace*{0pt} ~~~~~~~~~~~~else collect{\char95}duplicates A{\char95}~xs (z ::~ys) zs)\\
-\hspace*{0pt} ~~~~~else collect{\char95}duplicates A{\char95}~(z ::~xs) (z ::~ys) zs);\\
-\hspace*{0pt}\\
-\hspace*{0pt}end;~(*struct Example*)%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent Obviously, polymorphic equality is implemented the Haskell
-  way using a type class.  How is this achieved?  HOL introduces
-  an explicit class \isa{eq} with a corresponding operation
-  \isa{eq{\isacharunderscore}class{\isachardot}eq} such that \isa{eq{\isacharunderscore}class{\isachardot}eq\ {\isacharequal}\ op\ {\isacharequal}}.
-  The preprocessing framework does the rest by propagating the
-  \isa{eq} constraints through all dependent code equations.
-  For datatypes, instances of \isa{eq} are implicitly derived
-  when possible.  For other types, you may instantiate \isa{eq}
-  manually like any other type class.
-
-  Though this \isa{eq} class is designed to get rarely in
-  the way, a subtlety
-  enters the stage when definitions of overloaded constants
-  are dependent on operational equality.  For example, let
-  us define a lexicographic ordering on tuples
-  (also see theory \hyperlink{theory.Product-ord}{\mbox{\isa{Product{\isacharunderscore}ord}}}):%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{instantiation}\isamarkupfalse%
-\ {\isachardoublequoteopen}{\isacharasterisk}{\isachardoublequoteclose}\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}order{\isacharcomma}\ order{\isacharparenright}\ order\isanewline
-\isakeyword{begin}\isanewline
-\isanewline
-\isacommand{definition}\isamarkupfalse%
-\ {\isacharbrackleft}code\ del{\isacharbrackright}{\isacharcolon}\isanewline
-\ \ {\isachardoublequoteopen}x\ {\isasymle}\ y\ {\isasymlongleftrightarrow}\ fst\ x\ {\isacharless}\ fst\ y\ {\isasymor}\ fst\ x\ {\isacharequal}\ fst\ y\ {\isasymand}\ snd\ x\ {\isasymle}\ snd\ y{\isachardoublequoteclose}\isanewline
-\isanewline
-\isacommand{definition}\isamarkupfalse%
-\ {\isacharbrackleft}code\ del{\isacharbrackright}{\isacharcolon}\isanewline
-\ \ {\isachardoublequoteopen}x\ {\isacharless}\ y\ {\isasymlongleftrightarrow}\ fst\ x\ {\isacharless}\ fst\ y\ {\isasymor}\ fst\ x\ {\isacharequal}\ fst\ y\ {\isasymand}\ snd\ x\ {\isacharless}\ snd\ y{\isachardoublequoteclose}\isanewline
-\isanewline
-\isacommand{instance}\isamarkupfalse%
-\ \isacommand{proof}\isamarkupfalse%
-\isanewline
-\isacommand{qed}\isamarkupfalse%
-\ {\isacharparenleft}auto\ simp{\isacharcolon}\ less{\isacharunderscore}eq{\isacharunderscore}prod{\isacharunderscore}def\ less{\isacharunderscore}prod{\isacharunderscore}def\ intro{\isacharcolon}\ order{\isacharunderscore}less{\isacharunderscore}trans{\isacharparenright}\isanewline
-\isanewline
-\isacommand{end}\isamarkupfalse%
-\isanewline
-\isanewline
-\isacommand{lemma}\isamarkupfalse%
-\ order{\isacharunderscore}prod\ {\isacharbrackleft}code{\isacharbrackright}{\isacharcolon}\isanewline
-\ \ {\isachardoublequoteopen}{\isacharparenleft}x{\isadigit{1}}\ {\isasymColon}\ {\isacharprime}a{\isasymColon}order{\isacharcomma}\ y{\isadigit{1}}\ {\isasymColon}\ {\isacharprime}b{\isasymColon}order{\isacharparenright}\ {\isacharless}\ {\isacharparenleft}x{\isadigit{2}}{\isacharcomma}\ y{\isadigit{2}}{\isacharparenright}\ {\isasymlongleftrightarrow}\isanewline
-\ \ \ \ \ x{\isadigit{1}}\ {\isacharless}\ x{\isadigit{2}}\ {\isasymor}\ x{\isadigit{1}}\ {\isacharequal}\ x{\isadigit{2}}\ {\isasymand}\ y{\isadigit{1}}\ {\isacharless}\ y{\isadigit{2}}{\isachardoublequoteclose}\isanewline
-\ \ {\isachardoublequoteopen}{\isacharparenleft}x{\isadigit{1}}\ {\isasymColon}\ {\isacharprime}a{\isasymColon}order{\isacharcomma}\ y{\isadigit{1}}\ {\isasymColon}\ {\isacharprime}b{\isasymColon}order{\isacharparenright}\ {\isasymle}\ {\isacharparenleft}x{\isadigit{2}}{\isacharcomma}\ y{\isadigit{2}}{\isacharparenright}\ {\isasymlongleftrightarrow}\isanewline
-\ \ \ \ \ x{\isadigit{1}}\ {\isacharless}\ x{\isadigit{2}}\ {\isasymor}\ x{\isadigit{1}}\ {\isacharequal}\ x{\isadigit{2}}\ {\isasymand}\ y{\isadigit{1}}\ {\isasymle}\ y{\isadigit{2}}{\isachardoublequoteclose}\isanewline
-\ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}\ less{\isacharunderscore}prod{\isacharunderscore}def\ less{\isacharunderscore}eq{\isacharunderscore}prod{\isacharunderscore}def{\isacharparenright}%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent Then code generation will fail.  Why?  The definition
-  of \isa{op\ {\isasymle}} depends on equality on both arguments,
-  which are polymorphic and impose an additional \isa{eq}
-  class constraint, which the preprocessor does not propagate
-  (for technical reasons).
-
-  The solution is to add \isa{eq} explicitly to the first sort arguments in the
-  code theorems:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{lemma}\isamarkupfalse%
-\ order{\isacharunderscore}prod{\isacharunderscore}code\ {\isacharbrackleft}code{\isacharbrackright}{\isacharcolon}\isanewline
-\ \ {\isachardoublequoteopen}{\isacharparenleft}x{\isadigit{1}}\ {\isasymColon}\ {\isacharprime}a{\isasymColon}{\isacharbraceleft}order{\isacharcomma}\ eq{\isacharbraceright}{\isacharcomma}\ y{\isadigit{1}}\ {\isasymColon}\ {\isacharprime}b{\isasymColon}order{\isacharparenright}\ {\isacharless}\ {\isacharparenleft}x{\isadigit{2}}{\isacharcomma}\ y{\isadigit{2}}{\isacharparenright}\ {\isasymlongleftrightarrow}\isanewline
-\ \ \ \ \ x{\isadigit{1}}\ {\isacharless}\ x{\isadigit{2}}\ {\isasymor}\ x{\isadigit{1}}\ {\isacharequal}\ x{\isadigit{2}}\ {\isasymand}\ y{\isadigit{1}}\ {\isacharless}\ y{\isadigit{2}}{\isachardoublequoteclose}\isanewline
-\ \ {\isachardoublequoteopen}{\isacharparenleft}x{\isadigit{1}}\ {\isasymColon}\ {\isacharprime}a{\isasymColon}{\isacharbraceleft}order{\isacharcomma}\ eq{\isacharbraceright}{\isacharcomma}\ y{\isadigit{1}}\ {\isasymColon}\ {\isacharprime}b{\isasymColon}order{\isacharparenright}\ {\isasymle}\ {\isacharparenleft}x{\isadigit{2}}{\isacharcomma}\ y{\isadigit{2}}{\isacharparenright}\ {\isasymlongleftrightarrow}\isanewline
-\ \ \ \ \ x{\isadigit{1}}\ {\isacharless}\ x{\isadigit{2}}\ {\isasymor}\ x{\isadigit{1}}\ {\isacharequal}\ x{\isadigit{2}}\ {\isasymand}\ y{\isadigit{1}}\ {\isasymle}\ y{\isadigit{2}}{\isachardoublequoteclose}\isanewline
-\ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}\ less{\isacharunderscore}prod{\isacharunderscore}def\ less{\isacharunderscore}eq{\isacharunderscore}prod{\isacharunderscore}def{\isacharparenright}%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent Then code generation succeeds:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-%
-\begin{isamarkuptext}%
-\isatypewriter%
-\noindent%
-\hspace*{0pt}structure Example = \\
-\hspace*{0pt}struct\\
-\hspace*{0pt}\\
-\hspace*{0pt}type 'a eq = {\char123}eq :~'a -> 'a -> bool{\char125};\\
-\hspace*{0pt}fun eq (A{\char95}:'a eq) = {\char35}eq A{\char95};\\
-\hspace*{0pt}\\
-\hspace*{0pt}type 'a ord = {\char123}less{\char95}eq :~'a -> 'a -> bool,~less :~'a -> 'a -> bool{\char125};\\
-\hspace*{0pt}fun less{\char95}eq (A{\char95}:'a ord) = {\char35}less{\char95}eq A{\char95};\\
-\hspace*{0pt}fun less (A{\char95}:'a ord) = {\char35}less A{\char95};\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun eqop A{\char95}~a b = eq A{\char95}~a b;\\
-\hspace*{0pt}\\
-\hspace*{0pt}type 'a preorder = {\char123}Orderings{\char95}{\char95}ord{\char95}preorder :~'a ord{\char125};\\
-\hspace*{0pt}fun ord{\char95}preorder (A{\char95}:'a preorder) = {\char35}Orderings{\char95}{\char95}ord{\char95}preorder A{\char95};\\
-\hspace*{0pt}\\
-\hspace*{0pt}type 'a order = {\char123}Orderings{\char95}{\char95}preorder{\char95}order :~'a preorder{\char125};\\
-\hspace*{0pt}fun preorder{\char95}order (A{\char95}:'a order) = {\char35}Orderings{\char95}{\char95}preorder{\char95}order A{\char95};\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun less{\char95}eqa (A1{\char95},~A2{\char95}) B{\char95}~(x1,~y1) (x2,~y2) =\\
-\hspace*{0pt} ~less ((ord{\char95}preorder o preorder{\char95}order) A2{\char95}) x1 x2 orelse\\
-\hspace*{0pt} ~~~eqop A1{\char95}~x1 x2 andalso\\
-\hspace*{0pt} ~~~~~less{\char95}eq ((ord{\char95}preorder o preorder{\char95}order) B{\char95}) y1 y2\\
-\hspace*{0pt} ~| less{\char95}eqa (A1{\char95},~A2{\char95}) B{\char95}~(x1,~y1) (x2,~y2) =\\
-\hspace*{0pt} ~~~less ((ord{\char95}preorder o preorder{\char95}order) A2{\char95}) x1 x2 orelse\\
-\hspace*{0pt} ~~~~~eqop A1{\char95}~x1 x2 andalso\\
-\hspace*{0pt} ~~~~~~~less{\char95}eq ((ord{\char95}preorder o preorder{\char95}order) B{\char95}) y1 y2;\\
-\hspace*{0pt}\\
-\hspace*{0pt}end;~(*struct Example*)%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-In some cases, the automatically derived code equations
-  for equality on a particular type may not be appropriate.
-  As example, watch the following datatype representing
-  monomorphic parametric types (where type constructors
-  are referred to by natural numbers):%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{datatype}\isamarkupfalse%
-\ monotype\ {\isacharequal}\ Mono\ nat\ {\isachardoublequoteopen}monotype\ list{\isachardoublequoteclose}%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\isatagproof
-%
-\endisatagproof
-{\isafoldproof}%
-%
-\isadelimproof
-%
-\endisadelimproof
-%
-\begin{isamarkuptext}%
-\noindent Then code generation for SML would fail with a message
-  that the generated code contains illegal mutual dependencies:
-  the theorem \isa{eq{\isacharunderscore}class{\isachardot}eq\ {\isacharparenleft}Mono\ tyco{\isadigit{1}}\ typargs{\isadigit{1}}{\isacharparenright}\ {\isacharparenleft}Mono\ tyco{\isadigit{2}}\ typargs{\isadigit{2}}{\isacharparenright}\ {\isasymequiv}\ eq{\isacharunderscore}class{\isachardot}eq\ tyco{\isadigit{1}}\ tyco{\isadigit{2}}\ {\isasymand}\ eq{\isacharunderscore}class{\isachardot}eq\ typargs{\isadigit{1}}\ typargs{\isadigit{2}}} already requires the
-  instance \isa{monotype\ {\isasymColon}\ eq}, which itself requires
-  \isa{eq{\isacharunderscore}class{\isachardot}eq\ {\isacharparenleft}Mono\ tyco{\isadigit{1}}\ typargs{\isadigit{1}}{\isacharparenright}\ {\isacharparenleft}Mono\ tyco{\isadigit{2}}\ typargs{\isadigit{2}}{\isacharparenright}\ {\isasymequiv}\ eq{\isacharunderscore}class{\isachardot}eq\ tyco{\isadigit{1}}\ tyco{\isadigit{2}}\ {\isasymand}\ eq{\isacharunderscore}class{\isachardot}eq\ typargs{\isadigit{1}}\ typargs{\isadigit{2}}};  Haskell has no problem with mutually
-  recursive \isa{instance} and \isa{function} definitions,
-  but the SML serialiser does not support this.
-
-  In such cases, you have to provide your own equality equations
-  involving auxiliary constants.  In our case,
-  \isa{list{\isacharunderscore}all{\isadigit{2}}} can do the job:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{lemma}\isamarkupfalse%
-\ monotype{\isacharunderscore}eq{\isacharunderscore}list{\isacharunderscore}all{\isadigit{2}}\ {\isacharbrackleft}code{\isacharbrackright}{\isacharcolon}\isanewline
-\ \ {\isachardoublequoteopen}eq{\isacharunderscore}class{\isachardot}eq\ {\isacharparenleft}Mono\ tyco{\isadigit{1}}\ typargs{\isadigit{1}}{\isacharparenright}\ {\isacharparenleft}Mono\ tyco{\isadigit{2}}\ typargs{\isadigit{2}}{\isacharparenright}\ {\isasymlongleftrightarrow}\isanewline
-\ \ \ \ \ eq{\isacharunderscore}class{\isachardot}eq\ tyco{\isadigit{1}}\ tyco{\isadigit{2}}\ {\isasymand}\ list{\isacharunderscore}all{\isadigit{2}}\ eq{\isacharunderscore}class{\isachardot}eq\ typargs{\isadigit{1}}\ typargs{\isadigit{2}}{\isachardoublequoteclose}\isanewline
-\ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp\ add{\isacharcolon}\ eq\ list{\isacharunderscore}all{\isadigit{2}}{\isacharunderscore}eq\ {\isacharbrackleft}symmetric{\isacharbrackright}{\isacharparenright}%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent does not depend on instance \isa{monotype\ {\isasymColon}\ eq}:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-%
-\begin{isamarkuptext}%
-\isatypewriter%
-\noindent%
-\hspace*{0pt}structure Example = \\
-\hspace*{0pt}struct\\
-\hspace*{0pt}\\
-\hspace*{0pt}datatype nat = Zero{\char95}nat | Suc of nat;\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun null [] = true\\
-\hspace*{0pt} ~| null (x ::~xs) = false;\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun eq{\char95}nat (Suc a) Zero{\char95}nat = false\\
-\hspace*{0pt} ~| eq{\char95}nat Zero{\char95}nat (Suc a) = false\\
-\hspace*{0pt} ~| eq{\char95}nat (Suc nat) (Suc nat') = eq{\char95}nat nat nat'\\
-\hspace*{0pt} ~| eq{\char95}nat Zero{\char95}nat Zero{\char95}nat = true;\\
-\hspace*{0pt}\\
-\hspace*{0pt}datatype monotype = Mono of nat * monotype list;\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun list{\char95}all2 p (x ::~xs) (y ::~ys) = p x y andalso list{\char95}all2 p xs ys\\
-\hspace*{0pt} ~| list{\char95}all2 p xs [] = null xs\\
-\hspace*{0pt} ~| list{\char95}all2 p [] ys = null ys;\\
-\hspace*{0pt}\\
-\hspace*{0pt}fun eq{\char95}monotype (Mono (tyco1,~typargs1)) (Mono (tyco2,~typargs2)) =\\
-\hspace*{0pt} ~eq{\char95}nat tyco1 tyco2 andalso list{\char95}all2 eq{\char95}monotype typargs1 typargs2;\\
-\hspace*{0pt}\\
-\hspace*{0pt}end;~(*struct Example*)%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isamarkupsubsection{Explicit partiality%
-}
-\isamarkuptrue%
-%
-\begin{isamarkuptext}%
-Partiality usually enters the game by partial patterns, as
-  in the following example, again for amortised queues:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{definition}\isamarkupfalse%
-\ strict{\isacharunderscore}dequeue\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a\ queue\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a\ queue{\isachardoublequoteclose}\ \isakeyword{where}\isanewline
-\ \ {\isachardoublequoteopen}strict{\isacharunderscore}dequeue\ q\ {\isacharequal}\ {\isacharparenleft}case\ dequeue\ q\isanewline
-\ \ \ \ of\ {\isacharparenleft}Some\ x{\isacharcomma}\ q{\isacharprime}{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}x{\isacharcomma}\ q{\isacharprime}{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\isanewline
-\isacommand{lemma}\isamarkupfalse%
-\ strict{\isacharunderscore}dequeue{\isacharunderscore}AQueue\ {\isacharbrackleft}code{\isacharbrackright}{\isacharcolon}\isanewline
-\ \ {\isachardoublequoteopen}strict{\isacharunderscore}dequeue\ {\isacharparenleft}AQueue\ xs\ {\isacharparenleft}y\ {\isacharhash}\ ys{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}y{\isacharcomma}\ AQueue\ xs\ ys{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ {\isachardoublequoteopen}strict{\isacharunderscore}dequeue\ {\isacharparenleft}AQueue\ xs\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\ {\isacharequal}\isanewline
-\ \ \ \ {\isacharparenleft}case\ rev\ xs\ of\ y\ {\isacharhash}\ ys\ {\isasymRightarrow}\ {\isacharparenleft}y{\isacharcomma}\ AQueue\ {\isacharbrackleft}{\isacharbrackright}\ ys{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}\ strict{\isacharunderscore}dequeue{\isacharunderscore}def\ dequeue{\isacharunderscore}AQueue\ split{\isacharcolon}\ list{\isachardot}splits{\isacharparenright}%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent In the corresponding code, there is no equation
-  for the pattern \isa{Program{\isachardot}AQueue\ {\isacharbrackleft}{\isacharbrackright}\ {\isacharbrackleft}{\isacharbrackright}}:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-%
-\begin{isamarkuptext}%
-\isatypewriter%
-\noindent%
-\hspace*{0pt}strict{\char95}dequeue ::~forall a.~Queue a -> (a,~Queue a);\\
-\hspace*{0pt}strict{\char95}dequeue (AQueue xs []) =\\
-\hspace*{0pt} ~let {\char123}\\
-\hspace*{0pt} ~~~(y :~ys) = rev xs;\\
-\hspace*{0pt} ~{\char125}~in (y,~AQueue [] ys);\\
-\hspace*{0pt}strict{\char95}dequeue (AQueue xs (y :~ys)) = (y,~AQueue xs ys);%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent In some cases it is desirable to have this
-  pseudo-\qt{partiality} more explicitly, e.g.~as follows:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{axiomatization}\isamarkupfalse%
-\ empty{\isacharunderscore}queue\ {\isacharcolon}{\isacharcolon}\ {\isacharprime}a\isanewline
-\isanewline
-\isacommand{definition}\isamarkupfalse%
-\ strict{\isacharunderscore}dequeue{\isacharprime}\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharprime}a\ queue\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymtimes}\ {\isacharprime}a\ queue{\isachardoublequoteclose}\ \isakeyword{where}\isanewline
-\ \ {\isachardoublequoteopen}strict{\isacharunderscore}dequeue{\isacharprime}\ q\ {\isacharequal}\ {\isacharparenleft}case\ dequeue\ q\ of\ {\isacharparenleft}Some\ x{\isacharcomma}\ q{\isacharprime}{\isacharparenright}\ {\isasymRightarrow}\ {\isacharparenleft}x{\isacharcomma}\ q{\isacharprime}{\isacharparenright}\ {\isacharbar}\ {\isacharunderscore}\ {\isasymRightarrow}\ empty{\isacharunderscore}queue{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\isanewline
-\isacommand{lemma}\isamarkupfalse%
-\ strict{\isacharunderscore}dequeue{\isacharprime}{\isacharunderscore}AQueue\ {\isacharbrackleft}code{\isacharbrackright}{\isacharcolon}\isanewline
-\ \ {\isachardoublequoteopen}strict{\isacharunderscore}dequeue{\isacharprime}\ {\isacharparenleft}AQueue\ xs\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}if\ xs\ {\isacharequal}\ {\isacharbrackleft}{\isacharbrackright}\ then\ empty{\isacharunderscore}queue\isanewline
-\ \ \ \ \ else\ strict{\isacharunderscore}dequeue{\isacharprime}\ {\isacharparenleft}AQueue\ {\isacharbrackleft}{\isacharbrackright}\ {\isacharparenleft}rev\ xs{\isacharparenright}{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ {\isachardoublequoteopen}strict{\isacharunderscore}dequeue{\isacharprime}\ {\isacharparenleft}AQueue\ xs\ {\isacharparenleft}y\ {\isacharhash}\ ys{\isacharparenright}{\isacharparenright}\ {\isacharequal}\isanewline
-\ \ \ \ \ {\isacharparenleft}y{\isacharcomma}\ AQueue\ xs\ ys{\isacharparenright}{\isachardoublequoteclose}\isanewline
-\ \ \isacommand{by}\isamarkupfalse%
-\ {\isacharparenleft}simp{\isacharunderscore}all\ add{\isacharcolon}\ strict{\isacharunderscore}dequeue{\isacharprime}{\isacharunderscore}def\ dequeue{\isacharunderscore}AQueue\ split{\isacharcolon}\ list{\isachardot}splits{\isacharparenright}%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-Observe that on the right hand side of the definition of \isa{strict{\isacharunderscore}dequeue{\isacharprime}} the constant \isa{empty{\isacharunderscore}queue} occurs
-  which is unspecified.
-
-  Normally, if constants without any code equations occur in a
-  program, the code generator complains (since in most cases this is
-  not what the user expects).  But such constants can also be thought
-  of as function definitions with no equations which always fail,
-  since there is never a successful pattern match on the left hand
-  side.  In order to categorise a constant into that category
-  explicitly, use \hyperlink{command.code-abort}{\mbox{\isa{\isacommand{code{\isacharunderscore}abort}}}}:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-\isacommand{code{\isacharunderscore}abort}\isamarkupfalse%
-\ empty{\isacharunderscore}queue%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent Then the code generator will just insert an error or
-  exception at the appropriate position:%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\isatagquote
-%
-\begin{isamarkuptext}%
-\isatypewriter%
-\noindent%
-\hspace*{0pt}empty{\char95}queue ::~forall a.~a;\\
-\hspace*{0pt}empty{\char95}queue = error {\char34}empty{\char95}queue{\char34};\\
-\hspace*{0pt}\\
-\hspace*{0pt}strict{\char95}dequeue' ::~forall a.~Queue a -> (a,~Queue a);\\
-\hspace*{0pt}strict{\char95}dequeue' (AQueue xs (y :~ys)) = (y,~AQueue xs ys);\\
-\hspace*{0pt}strict{\char95}dequeue' (AQueue xs []) =\\
-\hspace*{0pt} ~(if nulla xs then empty{\char95}queue\\
-\hspace*{0pt} ~~~else strict{\char95}dequeue' (AQueue [] (rev xs)));%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\endisatagquote
-{\isafoldquote}%
-%
-\isadelimquote
-%
-\endisadelimquote
-%
-\begin{isamarkuptext}%
-\noindent This feature however is rarely needed in practice.
-  Note also that the \isa{HOL} default setup already declares
-  \isa{undefined} as \hyperlink{command.code-abort}{\mbox{\isa{\isacommand{code{\isacharunderscore}abort}}}}, which is most
-  likely to be used in such situations.%
-\end{isamarkuptext}%
-\isamarkuptrue%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-%
-\isatagtheory
-\isacommand{end}\isamarkupfalse%
-%
-\endisatagtheory
-{\isafoldtheory}%
-%
-\isadelimtheory
-%
-\endisadelimtheory
-\isanewline
-\ \end{isabellebody}%
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: "root"
-%%% End: