src/HOL/Analysis/Cauchy_Integral_Theorem.thy
changeset 68527 2f4e2aab190a
parent 68493 143b4cc8fc74
child 68532 f8b98d31ad45
--- a/src/HOL/Analysis/Cauchy_Integral_Theorem.thy	Thu Jun 28 10:13:54 2018 +0200
+++ b/src/HOL/Analysis/Cauchy_Integral_Theorem.thy	Thu Jun 28 14:13:57 2018 +0100
@@ -283,7 +283,7 @@
       have x2: "(x + 1) / 2 \<notin> S"
         using that
         apply (clarsimp simp: image_iff)
-        by (metis add.commute add_diff_cancel_left' mult_2 real_sum_of_halves)
+        by (metis add.commute add_diff_cancel_left' mult_2 field_sum_of_halves)
       have "g1 +++ g2 \<circ> (\<lambda>x. (x+1) / 2) differentiable at x within {0..1}"
         by (rule differentiable_chain_within differentiable_subset [OF S [of "(x+1)/2"]] | use x2 that in force)+
       then show "g1 +++ g2 \<circ> (\<lambda>x. (x+1) / 2) differentiable at x within {0..1}"
@@ -6161,7 +6161,7 @@
   obtain r where "r > 0" and holfc: "f holomorphic_on cball z r" and w: "w \<in> ball z r"
   proof
     have "cball z ((r + dist w z) / 2) \<subseteq> ball z r"
-      using w by (simp add: dist_commute real_sum_of_halves subset_eq)
+      using w by (simp add: dist_commute field_sum_of_halves subset_eq)
     then show "f holomorphic_on cball z ((r + dist w z) / 2)"
       by (rule holomorphic_on_subset [OF holf])
     have "r > 0"