src/HOL/IMP/Abs_Int_Den/Abs_State.thy
changeset 45110 305f83b6da54
parent 44932 7c93ee993cae
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/IMP/Abs_Int_Den/Abs_State.thy	Wed Sep 28 08:51:55 2011 +0200
@@ -0,0 +1,50 @@
+(* Author: Tobias Nipkow *)
+
+theory Abs_State
+imports Abs_Int0_fun
+  "~~/src/HOL/Library/Char_ord" "~~/src/HOL/Library/List_lexord"
+  (* Library import merely to allow string lists to be sorted for output *)
+begin
+
+subsection "Abstract State with Computable Ordering"
+
+text{* A concrete type of state with computable @{text"\<sqsubseteq>"}: *}
+
+datatype 'a astate = FunDom "string \<Rightarrow> 'a" "string list"
+
+fun "fun" where "fun (FunDom f _) = f"
+fun dom where "dom (FunDom _ A) = A"
+
+definition [simp]: "inter_list xs ys = [x\<leftarrow>xs. x \<in> set ys]"
+
+definition "list S = [(x,fun S x). x \<leftarrow> sort(dom S)]"
+
+definition "lookup F x = (if x : set(dom F) then fun F x else Top)"
+
+definition "update F x y =
+  FunDom ((fun F)(x:=y)) (if x \<in> set(dom F) then dom F else x # dom F)"
+
+lemma lookup_update: "lookup (update S x y) = (lookup S)(x:=y)"
+by(rule ext)(auto simp: lookup_def update_def)
+
+instantiation astate :: (SL_top) SL_top
+begin
+
+definition "le_astate F G = (ALL x : set(dom G). lookup F x \<sqsubseteq> fun G x)"
+
+definition
+"join_astate F G =
+ FunDom (\<lambda>x. fun F x \<squnion> fun G x) (inter_list (dom F) (dom G))"
+
+definition "Top = FunDom (\<lambda>x. Top) []"
+
+instance
+proof
+  case goal2 thus ?case
+    apply(auto simp: le_astate_def)
+    by (metis lookup_def preord_class.le_trans top)
+qed (auto simp: le_astate_def lookup_def join_astate_def Top_astate_def)
+
+end
+
+end