doc-src/TutorialI/CTL/document/PDL.tex
changeset 40406 313a24b66a8d
parent 27015 f8537d69f514
--- a/doc-src/TutorialI/CTL/document/PDL.tex	Sun Nov 07 23:32:26 2010 +0100
+++ b/doc-src/TutorialI/CTL/document/PDL.tex	Mon Nov 08 00:00:47 2010 +0100
@@ -31,34 +31,34 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 \isacommand{datatype}\isamarkupfalse%
-\ formula\ {\isacharequal}\ Atom\ {\isachardoublequoteopen}atom{\isachardoublequoteclose}\isanewline
-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ Neg\ formula\isanewline
-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ And\ formula\ formula\isanewline
-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ AX\ formula\isanewline
-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ EF\ formula%
+\ formula\ {\isaliteral{3D}{\isacharequal}}\ Atom\ {\isaliteral{22}{\isachardoublequoteopen}}atom{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{7C}{\isacharbar}}\ Neg\ formula\isanewline
+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{7C}{\isacharbar}}\ And\ formula\ formula\isanewline
+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{7C}{\isacharbar}}\ AX\ formula\isanewline
+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isaliteral{7C}{\isacharbar}}\ EF\ formula%
 \begin{isamarkuptext}%
 \noindent
 This resembles the boolean expression case study in
 \S\ref{sec:boolex}.
 A validity relation between states and formulae specifies the semantics.
-The syntax annotation allows us to write \isa{s\ {\isasymTurnstile}\ f} instead of
+The syntax annotation allows us to write \isa{s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ f} instead of
 \hbox{\isa{valid\ s\ f}}. The definition is by recursion over the syntax:%
 \end{isamarkuptext}%
 \isamarkuptrue%
 \isacommand{primrec}\isamarkupfalse%
-\ valid\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}state\ {\isasymRightarrow}\ formula\ {\isasymRightarrow}\ bool{\isachardoublequoteclose}\ \ \ {\isacharparenleft}{\isachardoublequoteopen}{\isacharparenleft}{\isacharunderscore}\ {\isasymTurnstile}\ {\isacharunderscore}{\isacharparenright}{\isachardoublequoteclose}\ {\isacharbrackleft}{\isadigit{8}}{\isadigit{0}}{\isacharcomma}{\isadigit{8}}{\isadigit{0}}{\isacharbrackright}\ {\isadigit{8}}{\isadigit{0}}{\isacharparenright}\isanewline
+\ valid\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}state\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ formula\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ bool{\isaliteral{22}{\isachardoublequoteclose}}\ \ \ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{22}{\isachardoublequoteopen}}{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5F}{\isacharunderscore}}\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ {\isaliteral{5F}{\isacharunderscore}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{5B}{\isacharbrackleft}}{\isadigit{8}}{\isadigit{0}}{\isaliteral{2C}{\isacharcomma}}{\isadigit{8}}{\isadigit{0}}{\isaliteral{5D}{\isacharbrackright}}\ {\isadigit{8}}{\isadigit{0}}{\isaliteral{29}{\isacharparenright}}\isanewline
 \isakeyword{where}\isanewline
-{\isachardoublequoteopen}s\ {\isasymTurnstile}\ Atom\ a\ \ {\isacharequal}\ {\isacharparenleft}a\ {\isasymin}\ L\ s{\isacharparenright}{\isachardoublequoteclose}\ {\isacharbar}\isanewline
-{\isachardoublequoteopen}s\ {\isasymTurnstile}\ Neg\ f\ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymnot}{\isacharparenleft}s\ {\isasymTurnstile}\ f{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}\ {\isacharbar}\isanewline
-{\isachardoublequoteopen}s\ {\isasymTurnstile}\ And\ f\ g\ {\isacharequal}\ {\isacharparenleft}s\ {\isasymTurnstile}\ f\ {\isasymand}\ s\ {\isasymTurnstile}\ g{\isacharparenright}{\isachardoublequoteclose}\ {\isacharbar}\isanewline
-{\isachardoublequoteopen}s\ {\isasymTurnstile}\ AX\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ {\isasymlongrightarrow}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequoteclose}\ {\isacharbar}\isanewline
-{\isachardoublequoteopen}s\ {\isasymTurnstile}\ EF\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequoteclose}%
+{\isaliteral{22}{\isachardoublequoteopen}}s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ Atom\ a\ \ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}a\ {\isaliteral{5C3C696E3E}{\isasymin}}\ L\ s{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline
+{\isaliteral{22}{\isachardoublequoteopen}}s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ Neg\ f\ \ \ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6E6F743E}{\isasymnot}}{\isaliteral{28}{\isacharparenleft}}s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ f{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline
+{\isaliteral{22}{\isachardoublequoteopen}}s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ And\ f\ g\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ f\ {\isaliteral{5C3C616E643E}{\isasymand}}\ s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ g{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline
+{\isaliteral{22}{\isachardoublequoteopen}}s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ AX\ f\ \ \ \ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}s{\isaliteral{2C}{\isacharcomma}}t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ t\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ f{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline
+{\isaliteral{22}{\isachardoublequoteopen}}s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ EF\ f\ \ \ \ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}s{\isaliteral{2C}{\isacharcomma}}t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{5C3C616E643E}{\isasymand}}\ t\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ f{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}%
 \begin{isamarkuptext}%
 \noindent
 The first three equations should be self-explanatory. The temporal formula
 \isa{AX\ f} means that \isa{f} is true in \emph{A}ll ne\emph{X}t states whereas
 \isa{EF\ f} means that there \emph{E}xists some \emph{F}uture state in which \isa{f} is
-true. The future is expressed via \isa{\isactrlsup {\isacharasterisk}}, the reflexive transitive
+true. The future is expressed via \isa{\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}}, the reflexive transitive
 closure. Because of reflexivity, the future includes the present.
 
 Now we come to the model checker itself. It maps a formula into the
@@ -67,21 +67,21 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 \isacommand{primrec}\isamarkupfalse%
-\ mc\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}formula\ {\isasymRightarrow}\ state\ set{\isachardoublequoteclose}\ \isakeyword{where}\isanewline
-{\isachardoublequoteopen}mc{\isacharparenleft}Atom\ a{\isacharparenright}\ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ a\ {\isasymin}\ L\ s{\isacharbraceright}{\isachardoublequoteclose}\ {\isacharbar}\isanewline
-{\isachardoublequoteopen}mc{\isacharparenleft}Neg\ f{\isacharparenright}\ \ \ {\isacharequal}\ {\isacharminus}mc\ f{\isachardoublequoteclose}\ {\isacharbar}\isanewline
-{\isachardoublequoteopen}mc{\isacharparenleft}And\ f\ g{\isacharparenright}\ {\isacharequal}\ mc\ f\ {\isasyminter}\ mc\ g{\isachardoublequoteclose}\ {\isacharbar}\isanewline
-{\isachardoublequoteopen}mc{\isacharparenleft}AX\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ \ {\isasymlongrightarrow}\ t\ {\isasymin}\ mc\ f{\isacharbraceright}{\isachardoublequoteclose}\ {\isacharbar}\isanewline
-{\isachardoublequoteopen}mc{\isacharparenleft}EF\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}%
+\ mc\ {\isaliteral{3A}{\isacharcolon}}{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}formula\ {\isaliteral{5C3C52696768746172726F773E}{\isasymRightarrow}}\ state\ set{\isaliteral{22}{\isachardoublequoteclose}}\ \isakeyword{where}\isanewline
+{\isaliteral{22}{\isachardoublequoteopen}}mc{\isaliteral{28}{\isacharparenleft}}Atom\ a{\isaliteral{29}{\isacharparenright}}\ \ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{7B}{\isacharbraceleft}}s{\isaliteral{2E}{\isachardot}}\ a\ {\isaliteral{5C3C696E3E}{\isasymin}}\ L\ s{\isaliteral{7D}{\isacharbraceright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline
+{\isaliteral{22}{\isachardoublequoteopen}}mc{\isaliteral{28}{\isacharparenleft}}Neg\ f{\isaliteral{29}{\isacharparenright}}\ \ \ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{2D}{\isacharminus}}mc\ f{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline
+{\isaliteral{22}{\isachardoublequoteopen}}mc{\isaliteral{28}{\isacharparenleft}}And\ f\ g{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ mc\ f\ {\isaliteral{5C3C696E7465723E}{\isasyminter}}\ mc\ g{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline
+{\isaliteral{22}{\isachardoublequoteopen}}mc{\isaliteral{28}{\isacharparenleft}}AX\ f{\isaliteral{29}{\isacharparenright}}\ \ \ \ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{7B}{\isacharbraceleft}}s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C666F72616C6C3E}{\isasymforall}}t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}s{\isaliteral{2C}{\isacharcomma}}t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ \ {\isaliteral{5C3C6C6F6E6772696768746172726F773E}{\isasymlongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ mc\ f{\isaliteral{7D}{\isacharbraceright}}{\isaliteral{22}{\isachardoublequoteclose}}\ {\isaliteral{7C}{\isacharbar}}\isanewline
+{\isaliteral{22}{\isachardoublequoteopen}}mc{\isaliteral{28}{\isacharparenleft}}EF\ f{\isaliteral{29}{\isacharparenright}}\ \ \ \ {\isaliteral{3D}{\isacharequal}}\ lfp{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}T{\isaliteral{2E}{\isachardot}}\ mc\ f\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ {\isaliteral{28}{\isacharparenleft}}M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}%
 \begin{isamarkuptext}%
 \noindent
 Only the equation for \isa{EF} deserves some comments. Remember that the
-postfix \isa{{\isasyminverse}} and the infix \isa{{\isacharbackquote}{\isacharbackquote}} are predefined and denote the
+postfix \isa{{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}} and the infix \isa{{\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}} are predefined and denote the
 converse of a relation and the image of a set under a relation.  Thus
-\isa{M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T} is the set of all predecessors of \isa{T} and the least
-fixed point (\isa{lfp}) of \isa{{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T} is the least set
+\isa{M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T} is the set of all predecessors of \isa{T} and the least
+fixed point (\isa{lfp}) of \isa{{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}T{\isaliteral{2E}{\isachardot}}\ mc\ f\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T} is the least set
 \isa{T} containing \isa{mc\ f} and all predecessors of \isa{T}. If you
-find it hard to see that \isa{mc\ {\isacharparenleft}EF\ f{\isacharparenright}} contains exactly those states from
+find it hard to see that \isa{mc\ {\isaliteral{28}{\isacharparenleft}}EF\ f{\isaliteral{29}{\isacharparenright}}} contains exactly those states from
 which there is a path to a state where \isa{f} is true, do not worry --- this
 will be proved in a moment.
 
@@ -90,7 +90,7 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 \isacommand{lemma}\isamarkupfalse%
-\ mono{\isacharunderscore}ef{\isacharcolon}\ {\isachardoublequoteopen}mono{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}{\isachardoublequoteclose}\isanewline
+\ mono{\isaliteral{5F}{\isacharunderscore}}ef{\isaliteral{3A}{\isacharcolon}}\ {\isaliteral{22}{\isachardoublequoteopen}}mono{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}T{\isaliteral{2E}{\isachardot}}\ A\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ {\isaliteral{28}{\isacharparenleft}}M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
 %
 \isadelimproof
 %
@@ -98,7 +98,7 @@
 %
 \isatagproof
 \isacommand{apply}\isamarkupfalse%
-{\isacharparenleft}rule\ monoI{\isacharparenright}\isanewline
+{\isaliteral{28}{\isacharparenleft}}rule\ monoI{\isaliteral{29}{\isacharparenright}}\isanewline
 \isacommand{apply}\isamarkupfalse%
 \ blast\isanewline
 \isacommand{done}\isamarkupfalse%
@@ -117,8 +117,8 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 \isacommand{lemma}\isamarkupfalse%
-\ EF{\isacharunderscore}lemma{\isacharcolon}\isanewline
-\ \ {\isachardoublequoteopen}lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isachardoublequoteclose}%
+\ EF{\isaliteral{5F}{\isacharunderscore}}lemma{\isaliteral{3A}{\isacharcolon}}\isanewline
+\ \ {\isaliteral{22}{\isachardoublequoteopen}}lfp{\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}T{\isaliteral{2E}{\isachardot}}\ A\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ {\isaliteral{28}{\isacharparenleft}}M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{7B}{\isacharbraceleft}}s{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}s{\isaliteral{2C}{\isacharcomma}}t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{5C3C616E643E}{\isasymand}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A{\isaliteral{7D}{\isacharbraceright}}{\isaliteral{22}{\isachardoublequoteclose}}%
 \isadelimproof
 %
 \endisadelimproof
@@ -132,26 +132,26 @@
 \end{isamarkuptxt}%
 \isamarkuptrue%
 \isacommand{apply}\isamarkupfalse%
-{\isacharparenleft}rule\ equalityI{\isacharparenright}\isanewline
+{\isaliteral{28}{\isacharparenleft}}rule\ equalityI{\isaliteral{29}{\isacharparenright}}\isanewline
 \ \isacommand{apply}\isamarkupfalse%
-{\isacharparenleft}rule\ subsetI{\isacharparenright}\isanewline
+{\isaliteral{28}{\isacharparenleft}}rule\ subsetI{\isaliteral{29}{\isacharparenright}}\isanewline
 \ \isacommand{apply}\isamarkupfalse%
-{\isacharparenleft}simp{\isacharparenright}%
+{\isaliteral{28}{\isacharparenleft}}simp{\isaliteral{29}{\isacharparenright}}%
 \begin{isamarkuptxt}%
 \noindent
 Simplification leaves us with the following first subgoal
 \begin{isabelle}%
-\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}s{\isachardot}\ s\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}\ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A%
+\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}s{\isaliteral{2E}{\isachardot}}\ s\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}T{\isaliteral{2E}{\isachardot}}\ A\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ {\isaliteral{5C3C6578697374733E}{\isasymexists}}t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}s{\isaliteral{2C}{\isacharcomma}}\ t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}\ {\isaliteral{5C3C616E643E}{\isasymand}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A%
 \end{isabelle}
 which is proved by \isa{lfp}-induction:%
 \end{isamarkuptxt}%
 \isamarkuptrue%
 \ \isacommand{apply}\isamarkupfalse%
-{\isacharparenleft}erule\ lfp{\isacharunderscore}induct{\isacharunderscore}set{\isacharparenright}\isanewline
+{\isaliteral{28}{\isacharparenleft}}erule\ lfp{\isaliteral{5F}{\isacharunderscore}}induct{\isaliteral{5F}{\isacharunderscore}}set{\isaliteral{29}{\isacharparenright}}\isanewline
 \ \ \isacommand{apply}\isamarkupfalse%
-{\isacharparenleft}rule\ mono{\isacharunderscore}ef{\isacharparenright}\isanewline
+{\isaliteral{28}{\isacharparenleft}}rule\ mono{\isaliteral{5F}{\isacharunderscore}}ef{\isaliteral{29}{\isacharparenright}}\isanewline
 \ \isacommand{apply}\isamarkupfalse%
-{\isacharparenleft}simp{\isacharparenright}%
+{\isaliteral{28}{\isacharparenleft}}simp{\isaliteral{29}{\isacharparenright}}%
 \begin{isamarkuptxt}%
 \noindent
 Having disposed of the monotonicity subgoal,
@@ -166,68 +166,68 @@
 \end{isamarkuptxt}%
 \isamarkuptrue%
 \ \isacommand{apply}\isamarkupfalse%
-{\isacharparenleft}blast\ intro{\isacharcolon}\ rtrancl{\isacharunderscore}trans{\isacharparenright}%
+{\isaliteral{28}{\isacharparenleft}}blast\ intro{\isaliteral{3A}{\isacharcolon}}\ rtrancl{\isaliteral{5F}{\isacharunderscore}}trans{\isaliteral{29}{\isacharparenright}}%
 \begin{isamarkuptxt}%
 We now return to the second set inclusion subgoal, which is again proved
 pointwise:%
 \end{isamarkuptxt}%
 \isamarkuptrue%
 \isacommand{apply}\isamarkupfalse%
-{\isacharparenleft}rule\ subsetI{\isacharparenright}\isanewline
+{\isaliteral{28}{\isacharparenleft}}rule\ subsetI{\isaliteral{29}{\isacharparenright}}\isanewline
 \isacommand{apply}\isamarkupfalse%
-{\isacharparenleft}simp{\isacharcomma}\ clarify{\isacharparenright}%
+{\isaliteral{28}{\isacharparenleft}}simp{\isaliteral{2C}{\isacharcomma}}\ clarify{\isaliteral{29}{\isacharparenright}}%
 \begin{isamarkuptxt}%
 \noindent
 After simplification and clarification we are left with
 \begin{isabelle}%
-\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ t{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}{\isacharsemicolon}\ t\ {\isasymin}\ A{\isasymrbrakk}\ {\isasymLongrightarrow}\ x\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}%
+\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x\ t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{28}{\isacharparenleft}}x{\isaliteral{2C}{\isacharcomma}}\ t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}{\isaliteral{3B}{\isacharsemicolon}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ x\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}T{\isaliteral{2E}{\isachardot}}\ A\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T{\isaliteral{29}{\isacharparenright}}%
 \end{isabelle}
-This goal is proved by induction on \isa{{\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}}. But since the model
+This goal is proved by induction on \isa{{\isaliteral{28}{\isacharparenleft}}s{\isaliteral{2C}{\isacharcomma}}\ t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}}. But since the model
 checker works backwards (from \isa{t} to \isa{s}), we cannot use the
-induction theorem \isa{rtrancl{\isacharunderscore}induct}: it works in the
+induction theorem \isa{rtrancl{\isaliteral{5F}{\isacharunderscore}}induct}: it works in the
 forward direction. Fortunately the converse induction theorem
-\isa{converse{\isacharunderscore}rtrancl{\isacharunderscore}induct} already exists:
+\isa{converse{\isaliteral{5F}{\isacharunderscore}}rtrancl{\isaliteral{5F}{\isacharunderscore}}induct} already exists:
 \begin{isabelle}%
-\ \ \ \ \ {\isasymlbrakk}{\isacharparenleft}a{\isacharcomma}\ b{\isacharparenright}\ {\isasymin}\ r\isactrlsup {\isacharasterisk}{\isacharsemicolon}\ P\ b{\isacharsemicolon}\isanewline
-\isaindent{\ \ \ \ \ \ }{\isasymAnd}y\ z{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}y{\isacharcomma}\ z{\isacharparenright}\ {\isasymin}\ r{\isacharsemicolon}\ {\isacharparenleft}z{\isacharcomma}\ b{\isacharparenright}\ {\isasymin}\ r\isactrlsup {\isacharasterisk}{\isacharsemicolon}\ P\ z{\isasymrbrakk}\ {\isasymLongrightarrow}\ P\ y{\isasymrbrakk}\isanewline
-\isaindent{\ \ \ \ \ }{\isasymLongrightarrow}\ P\ a%
+\ \ \ \ \ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}{\isaliteral{3B}{\isacharsemicolon}}\ P\ b{\isaliteral{3B}{\isacharsemicolon}}\isanewline
+\isaindent{\ \ \ \ \ \ }{\isaliteral{5C3C416E643E}{\isasymAnd}}y\ z{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C6C6272616B6B3E}{\isasymlbrakk}}{\isaliteral{28}{\isacharparenleft}}y{\isaliteral{2C}{\isacharcomma}}\ z{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r{\isaliteral{3B}{\isacharsemicolon}}\ {\isaliteral{28}{\isacharparenleft}}z{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}{\isaliteral{3B}{\isacharsemicolon}}\ P\ z{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P\ y{\isaliteral{5C3C726272616B6B3E}{\isasymrbrakk}}\isanewline
+\isaindent{\ \ \ \ \ }{\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ P\ a%
 \end{isabelle}
-It says that if \isa{{\isacharparenleft}a{\isacharcomma}\ b{\isacharparenright}\ {\isasymin}\ r\isactrlsup {\isacharasterisk}} and we know \isa{P\ b} then we can infer
+It says that if \isa{{\isaliteral{28}{\isacharparenleft}}a{\isaliteral{2C}{\isacharcomma}}\ b{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ r\isaliteral{5C3C5E7375703E}{}\isactrlsup {\isaliteral{2A}{\isacharasterisk}}} and we know \isa{P\ b} then we can infer
 \isa{P\ a} provided each step backwards from a predecessor \isa{z} of
 \isa{b} preserves \isa{P}.%
 \end{isamarkuptxt}%
 \isamarkuptrue%
 \isacommand{apply}\isamarkupfalse%
-{\isacharparenleft}erule\ converse{\isacharunderscore}rtrancl{\isacharunderscore}induct{\isacharparenright}%
+{\isaliteral{28}{\isacharparenleft}}erule\ converse{\isaliteral{5F}{\isacharunderscore}}rtrancl{\isaliteral{5F}{\isacharunderscore}}induct{\isaliteral{29}{\isacharparenright}}%
 \begin{isamarkuptxt}%
 \noindent
 The base case
 \begin{isabelle}%
-\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ t{\isachardot}\ t\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}%
+\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x\ t{\isaliteral{2E}{\isachardot}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}T{\isaliteral{2E}{\isachardot}}\ A\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T{\isaliteral{29}{\isacharparenright}}%
 \end{isabelle}
 is solved by unrolling \isa{lfp} once%
 \end{isamarkuptxt}%
 \isamarkuptrue%
 \ \isacommand{apply}\isamarkupfalse%
-{\isacharparenleft}subst\ lfp{\isacharunderscore}unfold{\isacharbrackleft}OF\ mono{\isacharunderscore}ef{\isacharbrackright}{\isacharparenright}%
+{\isaliteral{28}{\isacharparenleft}}subst\ lfp{\isaliteral{5F}{\isacharunderscore}}unfold{\isaliteral{5B}{\isacharbrackleft}}OF\ mono{\isaliteral{5F}{\isacharunderscore}}ef{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}%
 \begin{isamarkuptxt}%
 \begin{isabelle}%
-\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x\ t{\isachardot}\ t\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}%
+\ {\isadigit{1}}{\isaliteral{2E}{\isachardot}}\ {\isaliteral{5C3C416E643E}{\isasymAnd}}x\ t{\isaliteral{2E}{\isachardot}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A\ {\isaliteral{5C3C4C6F6E6772696768746172726F773E}{\isasymLongrightarrow}}\ t\ {\isaliteral{5C3C696E3E}{\isasymin}}\ A\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ lfp\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6C616D6264613E}{\isasymlambda}}T{\isaliteral{2E}{\isachardot}}\ A\ {\isaliteral{5C3C756E696F6E3E}{\isasymunion}}\ M{\isaliteral{5C3C696E76657273653E}{\isasyminverse}}\ {\isaliteral{60}{\isacharbackquote}}{\isaliteral{60}{\isacharbackquote}}\ T{\isaliteral{29}{\isacharparenright}}%
 \end{isabelle}
 and disposing of the resulting trivial subgoal automatically:%
 \end{isamarkuptxt}%
 \isamarkuptrue%
 \ \isacommand{apply}\isamarkupfalse%
-{\isacharparenleft}blast{\isacharparenright}%
+{\isaliteral{28}{\isacharparenleft}}blast{\isaliteral{29}{\isacharparenright}}%
 \begin{isamarkuptxt}%
 \noindent
 The proof of the induction step is identical to the one for the base case:%
 \end{isamarkuptxt}%
 \isamarkuptrue%
 \isacommand{apply}\isamarkupfalse%
-{\isacharparenleft}subst\ lfp{\isacharunderscore}unfold{\isacharbrackleft}OF\ mono{\isacharunderscore}ef{\isacharbrackright}{\isacharparenright}\isanewline
+{\isaliteral{28}{\isacharparenleft}}subst\ lfp{\isaliteral{5F}{\isacharunderscore}}unfold{\isaliteral{5B}{\isacharbrackleft}}OF\ mono{\isaliteral{5F}{\isacharunderscore}}ef{\isaliteral{5D}{\isacharbrackright}}{\isaliteral{29}{\isacharparenright}}\isanewline
 \isacommand{apply}\isamarkupfalse%
-{\isacharparenleft}blast{\isacharparenright}\isanewline
+{\isaliteral{28}{\isacharparenleft}}blast{\isaliteral{29}{\isacharparenright}}\isanewline
 \isacommand{done}\isamarkupfalse%
 %
 \endisatagproof
@@ -243,7 +243,7 @@
 \end{isamarkuptext}%
 \isamarkuptrue%
 \isacommand{theorem}\isamarkupfalse%
-\ {\isachardoublequoteopen}mc\ f\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ s\ {\isasymTurnstile}\ f{\isacharbraceright}{\isachardoublequoteclose}\isanewline
+\ {\isaliteral{22}{\isachardoublequoteopen}}mc\ f\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{7B}{\isacharbraceleft}}s{\isaliteral{2E}{\isachardot}}\ s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ f{\isaliteral{7D}{\isacharbraceright}}{\isaliteral{22}{\isachardoublequoteclose}}\isanewline
 %
 \isadelimproof
 %
@@ -251,9 +251,9 @@
 %
 \isatagproof
 \isacommand{apply}\isamarkupfalse%
-{\isacharparenleft}induct{\isacharunderscore}tac\ f{\isacharparenright}\isanewline
+{\isaliteral{28}{\isacharparenleft}}induct{\isaliteral{5F}{\isacharunderscore}}tac\ f{\isaliteral{29}{\isacharparenright}}\isanewline
 \isacommand{apply}\isamarkupfalse%
-{\isacharparenleft}auto\ simp\ add{\isacharcolon}\ EF{\isacharunderscore}lemma{\isacharparenright}\isanewline
+{\isaliteral{28}{\isacharparenleft}}auto\ simp\ add{\isaliteral{3A}{\isacharcolon}}\ EF{\isaliteral{5F}{\isacharunderscore}}lemma{\isaliteral{29}{\isacharparenright}}\isanewline
 \isacommand{done}\isamarkupfalse%
 %
 \endisatagproof
@@ -268,16 +268,16 @@
 \isa{AX} has a dual operator \isa{EN} 
 (``there exists a next state such that'')%
 \footnote{We cannot use the customary \isa{EX}: it is reserved
-as the \textsc{ascii}-equivalent of \isa{{\isasymexists}}.}
+as the \textsc{ascii}-equivalent of \isa{{\isaliteral{5C3C6578697374733E}{\isasymexists}}}.}
 with the intended semantics
 \begin{isabelle}%
-\ \ \ \ \ s\ {\isasymTurnstile}\ EN\ f\ {\isacharequal}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\ {\isasymand}\ t\ {\isasymTurnstile}\ f{\isacharparenright}%
+\ \ \ \ \ s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ EN\ f\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}{\isaliteral{5C3C6578697374733E}{\isasymexists}}t{\isaliteral{2E}{\isachardot}}\ {\isaliteral{28}{\isacharparenleft}}s{\isaliteral{2C}{\isacharcomma}}\ t{\isaliteral{29}{\isacharparenright}}\ {\isaliteral{5C3C696E3E}{\isasymin}}\ M\ {\isaliteral{5C3C616E643E}{\isasymand}}\ t\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ f{\isaliteral{29}{\isacharparenright}}%
 \end{isabelle}
 Fortunately, \isa{EN\ f} can already be expressed as a PDL formula. How?
 
 Show that the semantics for \isa{EF} satisfies the following recursion equation:
 \begin{isabelle}%
-\ \ \ \ \ s\ {\isasymTurnstile}\ EF\ f\ {\isacharequal}\ {\isacharparenleft}s\ {\isasymTurnstile}\ f\ {\isasymor}\ s\ {\isasymTurnstile}\ EN\ {\isacharparenleft}EF\ f{\isacharparenright}{\isacharparenright}%
+\ \ \ \ \ s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ EF\ f\ {\isaliteral{3D}{\isacharequal}}\ {\isaliteral{28}{\isacharparenleft}}s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ f\ {\isaliteral{5C3C6F723E}{\isasymor}}\ s\ {\isaliteral{5C3C5475726E7374696C653E}{\isasymTurnstile}}\ EN\ {\isaliteral{28}{\isacharparenleft}}EF\ f{\isaliteral{29}{\isacharparenright}}{\isaliteral{29}{\isacharparenright}}%
 \end{isabelle}
 \end{exercise}
 \index{PDL|)}%