src/FOLP/ex/Foundation.thy
 changeset 25991 31b38a39e589 child 35762 af3ff2ba4c54
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/FOLP/ex/Foundation.thy	Sun Jan 27 20:04:32 2008 +0100
@@ -0,0 +1,135 @@
+(*  Title:      FOLP/ex/Foundation.ML
+    ID:         \$Id\$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1991  University of Cambridge
+*)
+
+header "Intuitionistic FOL: Examples from The Foundation of a Generic Theorem Prover"
+
+theory Foundation
+imports IFOLP
+begin
+
+lemma "?p : A&B  --> (C-->A&C)"
+apply (rule impI)
+apply (rule impI)
+apply (rule conjI)
+prefer 2 apply assumption
+apply (rule conjunct1)
+apply assumption
+done
+
+text {*A form of conj-elimination*}
+lemma
+  assumes "p : A & B"
+    and "!!x y. x : A ==> y : B ==> f(x, y) : C"
+  shows "?p : C"
+apply (rule prems)
+apply (rule conjunct1)
+apply (rule prems)
+apply (rule conjunct2)
+apply (rule prems)
+done
+
+lemma
+  assumes "!!A x. x : ~ ~A ==> cla(x) : A"
+  shows "?p : B | ~B"
+apply (rule prems)
+apply (rule notI)
+apply (rule_tac P = "~B" in notE)
+apply (rule_tac [2] notI)
+apply (rule_tac [2] P = "B | ~B" in notE)
+prefer 2 apply assumption
+apply (rule_tac [2] disjI1)
+prefer 2 apply assumption
+apply (rule notI)
+apply (rule_tac P = "B | ~B" in notE)
+apply assumption
+apply (rule disjI2)
+apply assumption
+done
+
+lemma
+  assumes "!!A x. x : ~ ~A ==> cla(x) : A"
+  shows "?p : B | ~B"
+apply (rule prems)
+apply (rule notI)
+apply (rule notE)
+apply (rule_tac [2] notI)
+apply (erule_tac [2] notE)
+apply (erule_tac [2] disjI1)
+apply (rule notI)
+apply (erule notE)
+apply (erule disjI2)
+done
+
+
+lemma
+  assumes "p : A | ~A"
+    and "q : ~ ~A"
+  shows "?p : A"
+apply (rule disjE)
+apply (rule prems)
+apply assumption
+apply (rule FalseE)
+apply (rule_tac P = "~A" in notE)
+apply (rule prems)
+apply assumption
+done
+
+
+subsection "Examples with quantifiers"
+
+lemma
+  assumes "p : ALL z. G(z)"
+  shows "?p : ALL z. G(z)|H(z)"
+apply (rule allI)
+apply (rule disjI1)
+apply (rule prems [THEN spec])
+done
+
+lemma "?p : ALL x. EX y. x=y"
+apply (rule allI)
+apply (rule exI)
+apply (rule refl)
+done
+
+lemma "?p : EX y. ALL x. x=y"
+apply (rule exI)
+apply (rule allI)
+apply (rule refl)?
+oops
+
+text {* Parallel lifting example. *}
+lemma "?p : EX u. ALL x. EX v. ALL y. EX w. P(u,x,v,y,w)"
+apply (rule exI allI)
+apply (rule exI allI)
+apply (rule exI allI)
+apply (rule exI allI)
+apply (rule exI allI)
+oops
+
+lemma
+  assumes "p : (EX z. F(z)) & B"
+  shows "?p : EX z. F(z) & B"
+apply (rule conjE)
+apply (rule prems)
+apply (rule exE)
+apply assumption
+apply (rule exI)
+apply (rule conjI)
+apply assumption
+apply assumption
+done
+
+text {* A bigger demonstration of quantifiers -- not in the paper. *}
+lemma "?p : (EX y. ALL x. Q(x,y)) -->  (ALL x. EX y. Q(x,y))"
+apply (rule impI)
+apply (rule allI)
+apply (rule exE, assumption)
+apply (rule exI)
+apply (rule allE, assumption)
+apply assumption
+done
+
+end