src/ZF/UNITY/SubstAx.thy
changeset 61392 331be2820f90
parent 60774 6c28d8ed2488
child 63120 629a4c5e953e
--- a/src/ZF/UNITY/SubstAx.thy	Sat Oct 10 21:43:07 2015 +0200
+++ b/src/ZF/UNITY/SubstAx.thy	Sat Oct 10 22:02:23 2015 +0200
@@ -17,58 +17,54 @@
   "A Ensures B == {F \<in> program. F \<in> (reachable(F) \<inter> A) ensures (reachable(F) \<inter> B) }"
 
 definition
-  LeadsTo :: "[i, i] => i"            (infixl "LeadsTo" 60)  where
-  "A LeadsTo B == {F \<in> program. F:(reachable(F) \<inter> A) leadsTo (reachable(F) \<inter> B)}"
-
-notation (xsymbols)
-  LeadsTo  (infixl " \<longmapsto>w " 60)
-
+  LeadsTo :: "[i, i] => i"            (infixl "\<longmapsto>w" 60)  where
+  "A \<longmapsto>w B == {F \<in> program. F:(reachable(F) \<inter> A) \<longmapsto> (reachable(F) \<inter> B)}"
 
 
 (*Resembles the previous definition of LeadsTo*)
 
 (* Equivalence with the HOL-like definition *)
 lemma LeadsTo_eq:
-"st_set(B)==> A LeadsTo B = {F \<in> program. F:(reachable(F) \<inter> A) leadsTo B}"
+"st_set(B)==> A \<longmapsto>w B = {F \<in> program. F:(reachable(F) \<inter> A) \<longmapsto> B}"
 apply (unfold LeadsTo_def)
 apply (blast dest: psp_stable2 leadsToD2 constrainsD2 intro: leadsTo_weaken)
 done
 
-lemma LeadsTo_type: "A LeadsTo B <=program"
+lemma LeadsTo_type: "A \<longmapsto>w B <=program"
 by (unfold LeadsTo_def, auto)
 
 (*** Specialized laws for handling invariants ***)
 
 (** Conjoining an Always property **)
-lemma Always_LeadsTo_pre: "F \<in> Always(I) ==> (F:(I \<inter> A) LeadsTo A') \<longleftrightarrow> (F \<in> A LeadsTo A')"
+lemma Always_LeadsTo_pre: "F \<in> Always(I) ==> (F:(I \<inter> A) \<longmapsto>w A') \<longleftrightarrow> (F \<in> A \<longmapsto>w A')"
 by (simp add: LeadsTo_def Always_eq_includes_reachable Int_absorb2 Int_assoc [symmetric] leadsToD2)
 
-lemma Always_LeadsTo_post: "F \<in> Always(I) ==> (F \<in> A LeadsTo (I \<inter> A')) \<longleftrightarrow> (F \<in> A LeadsTo A')"
+lemma Always_LeadsTo_post: "F \<in> Always(I) ==> (F \<in> A \<longmapsto>w (I \<inter> A')) \<longleftrightarrow> (F \<in> A \<longmapsto>w A')"
 apply (unfold LeadsTo_def)
 apply (simp add: Always_eq_includes_reachable Int_absorb2 Int_assoc [symmetric] leadsToD2)
 done
 
 (* Like 'Always_LeadsTo_pre RS iffD1', but with premises in the good order *)
-lemma Always_LeadsToI: "[| F \<in> Always(C); F \<in> (C \<inter> A) LeadsTo A' |] ==> F \<in> A LeadsTo A'"
+lemma Always_LeadsToI: "[| F \<in> Always(C); F \<in> (C \<inter> A) \<longmapsto>w A' |] ==> F \<in> A \<longmapsto>w A'"
 by (blast intro: Always_LeadsTo_pre [THEN iffD1])
 
 (* Like 'Always_LeadsTo_post RS iffD2', but with premises in the good order *)
-lemma Always_LeadsToD: "[| F \<in> Always(C);  F \<in> A LeadsTo A' |] ==> F \<in> A LeadsTo (C \<inter> A')"
+lemma Always_LeadsToD: "[| F \<in> Always(C);  F \<in> A \<longmapsto>w A' |] ==> F \<in> A \<longmapsto>w (C \<inter> A')"
 by (blast intro: Always_LeadsTo_post [THEN iffD2])
 
 (*** Introduction rules \<in> Basis, Trans, Union ***)
 
-lemma LeadsTo_Basis: "F \<in> A Ensures B ==> F \<in> A LeadsTo B"
+lemma LeadsTo_Basis: "F \<in> A Ensures B ==> F \<in> A \<longmapsto>w B"
 by (auto simp add: Ensures_def LeadsTo_def)
 
 lemma LeadsTo_Trans:
-     "[| F \<in> A LeadsTo B;  F \<in> B LeadsTo C |] ==> F \<in> A LeadsTo C"
+     "[| F \<in> A \<longmapsto>w B;  F \<in> B \<longmapsto>w C |] ==> F \<in> A \<longmapsto>w C"
 apply (simp (no_asm_use) add: LeadsTo_def)
 apply (blast intro: leadsTo_Trans)
 done
 
 lemma LeadsTo_Union:
-"[|(!!A. A \<in> S ==> F \<in> A LeadsTo B); F \<in> program|]==>F \<in> \<Union>(S) LeadsTo B"
+"[|(!!A. A \<in> S ==> F \<in> A \<longmapsto>w B); F \<in> program|]==>F \<in> \<Union>(S) \<longmapsto>w B"
 apply (simp add: LeadsTo_def)
 apply (subst Int_Union_Union2)
 apply (rule leadsTo_UN, auto)
@@ -76,23 +72,23 @@
 
 (*** Derived rules ***)
 
-lemma leadsTo_imp_LeadsTo: "F \<in> A leadsTo B ==> F \<in> A LeadsTo B"
+lemma leadsTo_imp_LeadsTo: "F \<in> A \<longmapsto> B ==> F \<in> A \<longmapsto>w B"
 apply (frule leadsToD2, clarify)
 apply (simp (no_asm_simp) add: LeadsTo_eq)
 apply (blast intro: leadsTo_weaken_L)
 done
 
 (*Useful with cancellation, disjunction*)
-lemma LeadsTo_Un_duplicate: "F \<in> A LeadsTo (A' \<union> A') ==> F \<in> A LeadsTo A'"
+lemma LeadsTo_Un_duplicate: "F \<in> A \<longmapsto>w (A' \<union> A') ==> F \<in> A \<longmapsto>w A'"
 by (simp add: Un_ac)
 
 lemma LeadsTo_Un_duplicate2:
-     "F \<in> A LeadsTo (A' \<union> C \<union> C) ==> F \<in> A LeadsTo (A' \<union> C)"
+     "F \<in> A \<longmapsto>w (A' \<union> C \<union> C) ==> F \<in> A \<longmapsto>w (A' \<union> C)"
 by (simp add: Un_ac)
 
 lemma LeadsTo_UN:
-    "[|(!!i. i \<in> I ==> F \<in> A(i) LeadsTo B); F \<in> program|]
-     ==>F:(\<Union>i \<in> I. A(i)) LeadsTo B"
+    "[|(!!i. i \<in> I ==> F \<in> A(i) \<longmapsto>w B); F \<in> program|]
+     ==>F:(\<Union>i \<in> I. A(i)) \<longmapsto>w B"
 apply (simp add: LeadsTo_def)
 apply (simp (no_asm_simp) del: UN_simps add: Int_UN_distrib)
 apply (rule leadsTo_UN, auto)
@@ -100,7 +96,7 @@
 
 (*Binary union introduction rule*)
 lemma LeadsTo_Un:
-     "[| F \<in> A LeadsTo C; F \<in> B LeadsTo C |] ==> F \<in> (A \<union> B) LeadsTo C"
+     "[| F \<in> A \<longmapsto>w C; F \<in> B \<longmapsto>w C |] ==> F \<in> (A \<union> B) \<longmapsto>w C"
 apply (subst Un_eq_Union)
 apply (rule LeadsTo_Union)
 apply (auto dest: LeadsTo_type [THEN subsetD])
@@ -108,63 +104,63 @@
 
 (*Lets us look at the starting state*)
 lemma single_LeadsTo_I:
-    "[|(!!s. s \<in> A ==> F:{s} LeadsTo B); F \<in> program|]==>F \<in> A LeadsTo B"
+    "[|(!!s. s \<in> A ==> F:{s} \<longmapsto>w B); F \<in> program|]==>F \<in> A \<longmapsto>w B"
 apply (subst UN_singleton [symmetric], rule LeadsTo_UN, auto)
 done
 
-lemma subset_imp_LeadsTo: "[| A \<subseteq> B; F \<in> program |] ==> F \<in> A LeadsTo B"
+lemma subset_imp_LeadsTo: "[| A \<subseteq> B; F \<in> program |] ==> F \<in> A \<longmapsto>w B"
 apply (simp (no_asm_simp) add: LeadsTo_def)
 apply (blast intro: subset_imp_leadsTo)
 done
 
-lemma empty_LeadsTo: "F \<in> 0 LeadsTo A \<longleftrightarrow> F \<in> program"
+lemma empty_LeadsTo: "F \<in> 0 \<longmapsto>w A \<longleftrightarrow> F \<in> program"
 by (auto dest: LeadsTo_type [THEN subsetD]
             intro: empty_subsetI [THEN subset_imp_LeadsTo])
 declare empty_LeadsTo [iff]
 
-lemma LeadsTo_state: "F \<in> A LeadsTo state \<longleftrightarrow> F \<in> program"
+lemma LeadsTo_state: "F \<in> A \<longmapsto>w state \<longleftrightarrow> F \<in> program"
 by (auto dest: LeadsTo_type [THEN subsetD] simp add: LeadsTo_eq)
 declare LeadsTo_state [iff]
 
-lemma LeadsTo_weaken_R: "[| F \<in> A LeadsTo A';  A'<=B'|] ==> F \<in> A LeadsTo B'"
+lemma LeadsTo_weaken_R: "[| F \<in> A \<longmapsto>w A';  A'<=B'|] ==> F \<in> A \<longmapsto>w B'"
 apply (unfold LeadsTo_def)
 apply (auto intro: leadsTo_weaken_R)
 done
 
-lemma LeadsTo_weaken_L: "[| F \<in> A LeadsTo A'; B \<subseteq> A |] ==> F \<in> B LeadsTo A'"
+lemma LeadsTo_weaken_L: "[| F \<in> A \<longmapsto>w A'; B \<subseteq> A |] ==> F \<in> B \<longmapsto>w A'"
 apply (unfold LeadsTo_def)
 apply (auto intro: leadsTo_weaken_L)
 done
 
-lemma LeadsTo_weaken: "[| F \<in> A LeadsTo A'; B<=A; A'<=B' |] ==> F \<in> B LeadsTo B'"
+lemma LeadsTo_weaken: "[| F \<in> A \<longmapsto>w A'; B<=A; A'<=B' |] ==> F \<in> B \<longmapsto>w B'"
 by (blast intro: LeadsTo_weaken_R LeadsTo_weaken_L LeadsTo_Trans)
 
 lemma Always_LeadsTo_weaken:
-"[| F \<in> Always(C);  F \<in> A LeadsTo A'; C \<inter> B \<subseteq> A;   C \<inter> A' \<subseteq> B' |]
-      ==> F \<in> B LeadsTo B'"
+"[| F \<in> Always(C);  F \<in> A \<longmapsto>w A'; C \<inter> B \<subseteq> A;   C \<inter> A' \<subseteq> B' |]
+      ==> F \<in> B \<longmapsto>w B'"
 apply (blast dest: Always_LeadsToI intro: LeadsTo_weaken Always_LeadsToD)
 done
 
 (** Two theorems for "proof lattices" **)
 
-lemma LeadsTo_Un_post: "F \<in> A LeadsTo B ==> F:(A \<union> B) LeadsTo B"
+lemma LeadsTo_Un_post: "F \<in> A \<longmapsto>w B ==> F:(A \<union> B) \<longmapsto>w B"
 by (blast dest: LeadsTo_type [THEN subsetD]
              intro: LeadsTo_Un subset_imp_LeadsTo)
 
-lemma LeadsTo_Trans_Un: "[| F \<in> A LeadsTo B;  F \<in> B LeadsTo C |]
-      ==> F \<in> (A \<union> B) LeadsTo C"
+lemma LeadsTo_Trans_Un: "[| F \<in> A \<longmapsto>w B;  F \<in> B \<longmapsto>w C |]
+      ==> F \<in> (A \<union> B) \<longmapsto>w C"
 apply (blast intro: LeadsTo_Un subset_imp_LeadsTo LeadsTo_weaken_L LeadsTo_Trans dest: LeadsTo_type [THEN subsetD])
 done
 
 (** Distributive laws **)
-lemma LeadsTo_Un_distrib: "(F \<in> (A \<union> B) LeadsTo C)  \<longleftrightarrow> (F \<in> A LeadsTo C & F \<in> B LeadsTo C)"
+lemma LeadsTo_Un_distrib: "(F \<in> (A \<union> B) \<longmapsto>w C)  \<longleftrightarrow> (F \<in> A \<longmapsto>w C & F \<in> B \<longmapsto>w C)"
 by (blast intro: LeadsTo_Un LeadsTo_weaken_L)
 
-lemma LeadsTo_UN_distrib: "(F \<in> (\<Union>i \<in> I. A(i)) LeadsTo B) \<longleftrightarrow>  (\<forall>i \<in> I. F \<in> A(i) LeadsTo B) & F \<in> program"
+lemma LeadsTo_UN_distrib: "(F \<in> (\<Union>i \<in> I. A(i)) \<longmapsto>w B) \<longleftrightarrow>  (\<forall>i \<in> I. F \<in> A(i) \<longmapsto>w B) & F \<in> program"
 by (blast dest: LeadsTo_type [THEN subsetD]
              intro: LeadsTo_UN LeadsTo_weaken_L)
 
-lemma LeadsTo_Union_distrib: "(F \<in> \<Union>(S) LeadsTo B)  \<longleftrightarrow>  (\<forall>A \<in> S. F \<in> A LeadsTo B) & F \<in> program"
+lemma LeadsTo_Union_distrib: "(F \<in> \<Union>(S) \<longmapsto>w B)  \<longleftrightarrow>  (\<forall>A \<in> S. F \<in> A \<longmapsto>w B) & F \<in> program"
 by (blast dest: LeadsTo_type [THEN subsetD]
              intro: LeadsTo_Union LeadsTo_weaken_L)
 
@@ -177,7 +173,7 @@
 
 lemma Always_LeadsTo_Basis: "[| F \<in> Always(I); F \<in> (I \<inter> (A-A')) Co (A \<union> A');
          F \<in> transient (I \<inter> (A-A')) |]
-  ==> F \<in> A LeadsTo A'"
+  ==> F \<in> A \<longmapsto>w A'"
 apply (rule Always_LeadsToI, assumption)
 apply (blast intro: EnsuresI LeadsTo_Basis Always_ConstrainsD [THEN Constrains_weaken] transient_strengthen)
 done
@@ -185,36 +181,36 @@
 (*Set difference: maybe combine with leadsTo_weaken_L??
   This is the most useful form of the "disjunction" rule*)
 lemma LeadsTo_Diff:
-     "[| F \<in> (A-B) LeadsTo C;  F \<in> (A \<inter> B) LeadsTo C |] ==> F \<in> A LeadsTo C"
+     "[| F \<in> (A-B) \<longmapsto>w C;  F \<in> (A \<inter> B) \<longmapsto>w C |] ==> F \<in> A \<longmapsto>w C"
 by (blast intro: LeadsTo_Un LeadsTo_weaken)
 
 lemma LeadsTo_UN_UN:
-     "[|(!!i. i \<in> I ==> F \<in> A(i) LeadsTo A'(i)); F \<in> program |]
-      ==> F \<in> (\<Union>i \<in> I. A(i)) LeadsTo (\<Union>i \<in> I. A'(i))"
+     "[|(!!i. i \<in> I ==> F \<in> A(i) \<longmapsto>w A'(i)); F \<in> program |]
+      ==> F \<in> (\<Union>i \<in> I. A(i)) \<longmapsto>w (\<Union>i \<in> I. A'(i))"
 apply (rule LeadsTo_Union, auto)
 apply (blast intro: LeadsTo_weaken_R)
 done
 
 (*Binary union version*)
 lemma LeadsTo_Un_Un:
-  "[| F \<in> A LeadsTo A'; F \<in> B LeadsTo B' |] ==> F:(A \<union> B) LeadsTo (A' \<union> B')"
+  "[| F \<in> A \<longmapsto>w A'; F \<in> B \<longmapsto>w B' |] ==> F:(A \<union> B) \<longmapsto>w (A' \<union> B')"
 by (blast intro: LeadsTo_Un LeadsTo_weaken_R)
 
 (** The cancellation law **)
 
-lemma LeadsTo_cancel2: "[| F \<in> A LeadsTo(A' \<union> B); F \<in> B LeadsTo B' |] ==> F \<in> A LeadsTo (A' \<union> B')"
+lemma LeadsTo_cancel2: "[| F \<in> A \<longmapsto>w(A' \<union> B); F \<in> B \<longmapsto>w B' |] ==> F \<in> A \<longmapsto>w (A' \<union> B')"
 by (blast intro: LeadsTo_Un_Un subset_imp_LeadsTo LeadsTo_Trans dest: LeadsTo_type [THEN subsetD])
 
 lemma Un_Diff: "A \<union> (B - A) = A \<union> B"
 by auto
 
-lemma LeadsTo_cancel_Diff2: "[| F \<in> A LeadsTo (A' \<union> B); F \<in> (B-A') LeadsTo B' |] ==> F \<in> A LeadsTo (A' \<union> B')"
+lemma LeadsTo_cancel_Diff2: "[| F \<in> A \<longmapsto>w (A' \<union> B); F \<in> (B-A') \<longmapsto>w B' |] ==> F \<in> A \<longmapsto>w (A' \<union> B')"
 apply (rule LeadsTo_cancel2)
 prefer 2 apply assumption
 apply (simp (no_asm_simp) add: Un_Diff)
 done
 
-lemma LeadsTo_cancel1: "[| F \<in> A LeadsTo (B \<union> A'); F \<in> B LeadsTo B' |] ==> F \<in> A LeadsTo (B' \<union> A')"
+lemma LeadsTo_cancel1: "[| F \<in> A \<longmapsto>w (B \<union> A'); F \<in> B \<longmapsto>w B' |] ==> F \<in> A \<longmapsto>w (B' \<union> A')"
 apply (simp add: Un_commute)
 apply (blast intro!: LeadsTo_cancel2)
 done
@@ -222,7 +218,7 @@
 lemma Diff_Un2: "(B - A) \<union> A = B \<union> A"
 by auto
 
-lemma LeadsTo_cancel_Diff1: "[| F \<in> A LeadsTo (B \<union> A'); F \<in> (B-A') LeadsTo B' |] ==> F \<in> A LeadsTo (B' \<union> A')"
+lemma LeadsTo_cancel_Diff1: "[| F \<in> A \<longmapsto>w (B \<union> A'); F \<in> (B-A') \<longmapsto>w B' |] ==> F \<in> A \<longmapsto>w (B' \<union> A')"
 apply (rule LeadsTo_cancel1)
 prefer 2 apply assumption
 apply (simp (no_asm_simp) add: Diff_Un2)
@@ -231,7 +227,7 @@
 (** The impossibility law **)
 
 (*The set "A" may be non-empty, but it contains no reachable states*)
-lemma LeadsTo_empty: "F \<in> A LeadsTo 0 ==> F \<in> Always (state -A)"
+lemma LeadsTo_empty: "F \<in> A \<longmapsto>w 0 ==> F \<in> Always (state -A)"
 apply (simp (no_asm_use) add: LeadsTo_def Always_eq_includes_reachable)
 apply (cut_tac reachable_type)
 apply (auto dest!: leadsTo_empty)
@@ -240,26 +236,26 @@
 (** PSP \<in> Progress-Safety-Progress **)
 
 (*Special case of PSP \<in> Misra's "stable conjunction"*)
-lemma PSP_Stable: "[| F \<in> A LeadsTo A';  F \<in> Stable(B) |]==> F:(A \<inter> B) LeadsTo (A' \<inter> B)"
+lemma PSP_Stable: "[| F \<in> A \<longmapsto>w A';  F \<in> Stable(B) |]==> F:(A \<inter> B) \<longmapsto>w (A' \<inter> B)"
 apply (simp add: LeadsTo_def Stable_eq_stable, clarify)
 apply (drule psp_stable, assumption)
 apply (simp add: Int_ac)
 done
 
-lemma PSP_Stable2: "[| F \<in> A LeadsTo A'; F \<in> Stable(B) |] ==> F \<in> (B \<inter> A) LeadsTo (B \<inter> A')"
+lemma PSP_Stable2: "[| F \<in> A \<longmapsto>w A'; F \<in> Stable(B) |] ==> F \<in> (B \<inter> A) \<longmapsto>w (B \<inter> A')"
 apply (simp (no_asm_simp) add: PSP_Stable Int_ac)
 done
 
-lemma PSP: "[| F \<in> A LeadsTo A'; F \<in> B Co B'|]==> F \<in> (A \<inter> B') LeadsTo ((A' \<inter> B) \<union> (B' - B))"
+lemma PSP: "[| F \<in> A \<longmapsto>w A'; F \<in> B Co B'|]==> F \<in> (A \<inter> B') \<longmapsto>w ((A' \<inter> B) \<union> (B' - B))"
 apply (simp (no_asm_use) add: LeadsTo_def Constrains_eq_constrains)
 apply (blast dest: psp intro: leadsTo_weaken)
 done
 
-lemma PSP2: "[| F \<in> A LeadsTo A'; F \<in> B Co B' |]==> F:(B' \<inter> A) LeadsTo ((B \<inter> A') \<union> (B' - B))"
+lemma PSP2: "[| F \<in> A \<longmapsto>w A'; F \<in> B Co B' |]==> F:(B' \<inter> A) \<longmapsto>w ((B \<inter> A') \<union> (B' - B))"
 by (simp (no_asm_simp) add: PSP Int_ac)
 
 lemma PSP_Unless:
-"[| F \<in> A LeadsTo A'; F \<in> B Unless B'|]==> F:(A \<inter> B) LeadsTo ((A' \<inter> B) \<union> B')"
+"[| F \<in> A \<longmapsto>w A'; F \<in> B Unless B'|]==> F:(A \<inter> B) \<longmapsto>w ((A' \<inter> B) \<union> B')"
 apply (unfold op_Unless_def)
 apply (drule PSP, assumption)
 apply (blast intro: LeadsTo_Diff LeadsTo_weaken subset_imp_LeadsTo)
@@ -269,10 +265,10 @@
 
 (** Meta or object quantifier ????? **)
 lemma LeadsTo_wf_induct: "[| wf(r);
-         \<forall>m \<in> I. F \<in> (A \<inter> f-``{m}) LeadsTo
+         \<forall>m \<in> I. F \<in> (A \<inter> f-``{m}) \<longmapsto>w
                             ((A \<inter> f-``(converse(r) `` {m})) \<union> B);
          field(r)<=I; A<=f-``I; F \<in> program |]
-      ==> F \<in> A LeadsTo B"
+      ==> F \<in> A \<longmapsto>w B"
 apply (simp (no_asm_use) add: LeadsTo_def)
 apply auto
 apply (erule_tac I = I and f = f in leadsTo_wf_induct, safe)
@@ -282,8 +278,8 @@
 done
 
 
-lemma LessThan_induct: "[| \<forall>m \<in> nat. F:(A \<inter> f-``{m}) LeadsTo ((A \<inter> f-``m) \<union> B);
-      A<=f-``nat; F \<in> program |] ==> F \<in> A LeadsTo B"
+lemma LessThan_induct: "[| \<forall>m \<in> nat. F:(A \<inter> f-``{m}) \<longmapsto>w ((A \<inter> f-``m) \<union> B);
+      A<=f-``nat; F \<in> program |] ==> F \<in> A \<longmapsto>w B"
 apply (rule_tac A1 = nat and f1 = "%x. x" in wf_measure [THEN LeadsTo_wf_induct])
 apply (simp_all add: nat_measure_field)
 apply (simp add: ltI Image_inverse_lessThan vimage_def [symmetric])
@@ -301,18 +297,18 @@
 
 (*** Completion \<in> Binary and General Finite versions ***)
 
-lemma Completion: "[| F \<in> A LeadsTo (A' \<union> C);  F \<in> A' Co (A' \<union> C);
-         F \<in> B LeadsTo (B' \<union> C);  F \<in> B' Co (B' \<union> C) |]
-      ==> F \<in> (A \<inter> B) LeadsTo ((A' \<inter> B') \<union> C)"
+lemma Completion: "[| F \<in> A \<longmapsto>w (A' \<union> C);  F \<in> A' Co (A' \<union> C);
+         F \<in> B \<longmapsto>w (B' \<union> C);  F \<in> B' Co (B' \<union> C) |]
+      ==> F \<in> (A \<inter> B) \<longmapsto>w ((A' \<inter> B') \<union> C)"
 apply (simp (no_asm_use) add: LeadsTo_def Constrains_eq_constrains Int_Un_distrib)
 apply (blast intro: completion leadsTo_weaken)
 done
 
 lemma Finite_completion_aux:
      "[| I \<in> Fin(X);F \<in> program |]
-      ==> (\<forall>i \<in> I. F \<in> (A(i)) LeadsTo (A'(i) \<union> C)) \<longrightarrow>
+      ==> (\<forall>i \<in> I. F \<in> (A(i)) \<longmapsto>w (A'(i) \<union> C)) \<longrightarrow>
           (\<forall>i \<in> I. F \<in> (A'(i)) Co (A'(i) \<union> C)) \<longrightarrow>
-          F \<in> (\<Inter>i \<in> I. A(i)) LeadsTo ((\<Inter>i \<in> I. A'(i)) \<union> C)"
+          F \<in> (\<Inter>i \<in> I. A(i)) \<longmapsto>w ((\<Inter>i \<in> I. A'(i)) \<union> C)"
 apply (erule Fin_induct)
 apply (auto simp del: INT_simps simp add: Inter_0)
 apply (rule Completion, auto)
@@ -321,16 +317,16 @@
 done
 
 lemma Finite_completion:
-     "[| I \<in> Fin(X); !!i. i \<in> I ==> F \<in> A(i) LeadsTo (A'(i) \<union> C);
+     "[| I \<in> Fin(X); !!i. i \<in> I ==> F \<in> A(i) \<longmapsto>w (A'(i) \<union> C);
          !!i. i \<in> I ==> F \<in> A'(i) Co (A'(i) \<union> C);
          F \<in> program |]
-      ==> F \<in> (\<Inter>i \<in> I. A(i)) LeadsTo ((\<Inter>i \<in> I. A'(i)) \<union> C)"
+      ==> F \<in> (\<Inter>i \<in> I. A(i)) \<longmapsto>w ((\<Inter>i \<in> I. A'(i)) \<union> C)"
 by (blast intro: Finite_completion_aux [THEN mp, THEN mp])
 
 lemma Stable_completion:
-     "[| F \<in> A LeadsTo A';  F \<in> Stable(A');
-         F \<in> B LeadsTo B';  F \<in> Stable(B') |]
-    ==> F \<in> (A \<inter> B) LeadsTo (A' \<inter> B')"
+     "[| F \<in> A \<longmapsto>w A';  F \<in> Stable(A');
+         F \<in> B \<longmapsto>w B';  F \<in> Stable(B') |]
+    ==> F \<in> (A \<inter> B) \<longmapsto>w (A' \<inter> B')"
 apply (unfold Stable_def)
 apply (rule_tac C1 = 0 in Completion [THEN LeadsTo_weaken_R])
     prefer 5
@@ -340,9 +336,9 @@
 
 lemma Finite_stable_completion:
      "[| I \<in> Fin(X);
-         (!!i. i \<in> I ==> F \<in> A(i) LeadsTo A'(i));
+         (!!i. i \<in> I ==> F \<in> A(i) \<longmapsto>w A'(i));
          (!!i. i \<in> I ==>F \<in> Stable(A'(i)));   F \<in> program  |]
-      ==> F \<in> (\<Inter>i \<in> I. A(i)) LeadsTo (\<Inter>i \<in> I. A'(i))"
+      ==> F \<in> (\<Inter>i \<in> I. A(i)) \<longmapsto>w (\<Inter>i \<in> I. A'(i))"
 apply (unfold Stable_def)
 apply (rule_tac C1 = 0 in Finite_completion [THEN LeadsTo_weaken_R], simp_all)
 apply (rule_tac [3] subset_refl, auto)