doc-src/TutorialI/Misc/document/natsum.tex
changeset 11428 332347b9b942
parent 11418 53a402c10ba9
child 11456 7eb63f63e6c6
--- a/doc-src/TutorialI/Misc/document/natsum.tex	Mon Jul 16 13:14:19 2001 +0200
+++ b/doc-src/TutorialI/Misc/document/natsum.tex	Tue Jul 17 13:46:21 2001 +0200
@@ -26,13 +26,13 @@
 }
 The usual arithmetic operations \ttindexboldpos{+}{$HOL2arithfun},
 \ttindexboldpos{-}{$HOL2arithfun}, \ttindexboldpos{\mystar}{$HOL2arithfun},
-\isaindexbold{div}, \isaindexbold{mod}, \isaindexbold{min} and
-\isaindexbold{max} are predefined, as are the relations
+\sdx{div}, \sdx{mod}, \cdx{min} and
+\cdx{max} are predefined, as are the relations
 \indexboldpos{\isasymle}{$HOL2arithrel} and
 \ttindexboldpos{<}{$HOL2arithrel}. As usual, \isa{m\ {\isacharminus}\ n\ {\isacharequal}\ {\isadigit{0}}} if
 \isa{m\ {\isacharless}\ n}. There is even a least number operation
-\isaindexbold{LEAST}. For example, \isa{{\isacharparenleft}LEAST\ n{\isachardot}\ {\isadigit{1}}\ {\isacharless}\ n{\isacharparenright}\ {\isacharequal}\ {\isadigit{2}}}, although
-Isabelle does not prove this completely automatically. Note that \isa{{\isadigit{1}}}
+\sdx{LEAST}\@.  For example, \isa{{\isacharparenleft}LEAST\ n{\isachardot}\ {\isadigit{1}}\ {\isacharless}\ n{\isacharparenright}\ {\isacharequal}\ {\isadigit{2}}}, although
+Isabelle does not prove this automatically. Note that \isa{{\isadigit{1}}}
 and \isa{{\isadigit{2}}} are available as abbreviations for the corresponding
 \isa{Suc}-expressions. If you need the full set of numerals,
 see~\S\ref{sec:numerals}.
@@ -40,8 +40,8 @@
 \begin{warn}
   The constant \cdx{0} and the operations
   \ttindexboldpos{+}{$HOL2arithfun}, \ttindexboldpos{-}{$HOL2arithfun},
-  \ttindexboldpos{\mystar}{$HOL2arithfun}, \isaindexbold{min},
-  \isaindexbold{max}, \indexboldpos{\isasymle}{$HOL2arithrel} and
+  \ttindexboldpos{\mystar}{$HOL2arithfun}, \cdx{min},
+  \cdx{max}, \indexboldpos{\isasymle}{$HOL2arithrel} and
   \ttindexboldpos{<}{$HOL2arithrel} are overloaded, i.e.\ they are available
   not just for natural numbers but at other types as well.
   For example, given the goal \isa{x\ {\isacharplus}\ {\isadigit{0}}\ {\isacharequal}\ x},
@@ -76,7 +76,7 @@
 \isa{{\isasymlongrightarrow}}), the relations \isa{{\isacharequal}}, \isa{{\isasymle}} and \isa{{\isacharless}},
 and the operations
 \isa{{\isacharplus}}, \isa{{\isacharminus}}, \isa{min} and \isa{max}. Technically, this is
-known as the class of (quantifier free) \bfindex{linear arithmetic} formulae.
+known as the class of (quantifier free) \textbf{linear arithmetic} formulae.
 For example,%
 \end{isamarkuptext}%
 \isacommand{lemma}\ {\isachardoublequote}min\ i\ {\isacharparenleft}max\ j\ {\isacharparenleft}k{\isacharasterisk}k{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ max\ {\isacharparenleft}min\ {\isacharparenleft}k{\isacharasterisk}k{\isacharparenright}\ i{\isacharparenright}\ {\isacharparenleft}min\ i\ {\isacharparenleft}j{\isacharcolon}{\isacharcolon}nat{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
@@ -93,8 +93,8 @@
 
 \begin{warn}
   The running time of \isa{arith} is exponential in the number of occurrences
-  of \ttindexboldpos{-}{$HOL2arithfun}, \isaindexbold{min} and
-  \isaindexbold{max} because they are first eliminated by case distinctions.
+  of \ttindexboldpos{-}{$HOL2arithfun}, \cdx{min} and
+  \cdx{max} because they are first eliminated by case distinctions.
 
   \isa{arith} is incomplete even for the restricted class of
   linear arithmetic formulae. If divisibility plays a