src/HOL/Real/HahnBanach/HahnBanach.thy
changeset 9503 3324cbbecef8
parent 9475 b24516d96847
child 9560 b87a6afe5881
--- a/src/HOL/Real/HahnBanach/HahnBanach.thy	Wed Aug 02 19:40:14 2000 +0200
+++ b/src/HOL/Real/HahnBanach/HahnBanach.thy	Thu Aug 03 00:34:22 2000 +0200
@@ -64,37 +64,37 @@
 
 theorem HahnBanach:
   "[| is_vectorspace E; is_subspace F E; is_seminorm E p;
-  is_linearform F f; \\<forall>x \\<in> F. f x <= p x |] 
-  ==> \\<exists>h. is_linearform E h \\<and> (\\<forall>x \\<in> F. h x = f x)
-        \\<and> (\\<forall>x \\<in> E. h x <= p x)"   
+  is_linearform F f; \<forall>x \<in> F. f x <= p x |] 
+  ==> \<exists>h. is_linearform E h \<and> (\<forall>x \<in> F. h x = f x)
+        \<and> (\<forall>x \<in> E. h x <= p x)"   
     -- {* Let $E$ be a vector space, $F$ a subspace of $E$, $p$ a seminorm on $E$, *}
     -- {* and $f$ a linear form on $F$ such that $f$ is bounded by $p$, *}
     -- {* then $f$ can be extended to a linear form $h$ on $E$ in a norm-preserving way. \skp *}
 proof -
   assume "is_vectorspace E" "is_subspace F E" "is_seminorm E p" 
-   and "is_linearform F f" "\\<forall>x \\<in> F. f x <= p x"
+   and "is_linearform F f" "\<forall>x \<in> F. f x <= p x"
   -- {* Assume the context of the theorem. \skp *}
   def M == "norm_pres_extensions E p F f"
   -- {* Define $M$ as the set of all norm-preserving extensions of $F$. \skp *}
   {
-    fix c assume "c \\<in> chain M" "\\<exists>x. x \\<in> c"
-    have "\\<Union>c \\<in> M"
+    fix c assume "c \<in> chain M" "\<exists>x. x \<in> c"
+    have "\<Union>c \<in> M"
     -- {* Show that every non-empty chain $c$ of $M$ has an upper bound in $M$: *}
     -- {* $\Union c$ is greater than any element of the chain $c$, so it suffices to show $\Union c \in M$. *}
     proof (unfold M_def, rule norm_pres_extensionI)
-      show "\\<exists>H h. graph H h = \\<Union>c
-              \\<and> is_linearform H h 
-              \\<and> is_subspace H E 
-              \\<and> is_subspace F H 
-              \\<and> graph F f \\<subseteq> graph H h
-              \\<and> (\\<forall>x \\<in> H. h x <= p x)"
+      show "\<exists>H h. graph H h = \<Union>c
+              \<and> is_linearform H h 
+              \<and> is_subspace H E 
+              \<and> is_subspace F H 
+              \<and> graph F f \<subseteq> graph H h
+              \<and> (\<forall>x \<in> H. h x <= p x)"
       proof (intro exI conjI)
-        let ?H = "domain (\\<Union>c)"
-        let ?h = "funct (\\<Union>c)"
+        let ?H = "domain (\<Union>c)"
+        let ?h = "funct (\<Union>c)"
 
-        show a: "graph ?H ?h = \\<Union>c" 
+        show a: "graph ?H ?h = \<Union>c" 
         proof (rule graph_domain_funct)
-          fix x y z assume "(x, y) \\<in> \\<Union>c" "(x, z) \\<in> \\<Union>c"
+          fix x y z assume "(x, y) \<in> \<Union>c" "(x, z) \<in> \<Union>c"
           show "z = y" by (rule sup_definite)
         qed
         show "is_linearform ?H ?h" 
@@ -103,40 +103,40 @@
           by (rule sup_subE, rule a) (simp!)+
         show "is_subspace F ?H" 
           by (rule sup_supF, rule a) (simp!)+
-        show "graph F f \\<subseteq> graph ?H ?h" 
+        show "graph F f \<subseteq> graph ?H ?h" 
           by (rule sup_ext, rule a) (simp!)+
-        show "\\<forall>x \\<in> ?H. ?h x <= p x" 
+        show "\<forall>x \<in> ?H. ?h x <= p x" 
           by (rule sup_norm_pres, rule a) (simp!)+
       qed
     qed
 
   }
-  hence "\\<exists>g \\<in> M. \\<forall>x \\<in> M. g \\<subseteq> x --> g = x" 
+  hence "\<exists>g \<in> M. \<forall>x \<in> M. g \<subseteq> x --> g = x" 
   -- {* With Zorn's Lemma we can conclude that there is a maximal element in $M$.\skp *}
   proof (rule Zorn's_Lemma)
     -- {* We show that $M$ is non-empty: *}
-    have "graph F f \\<in> norm_pres_extensions E p F f"
+    have "graph F f \<in> norm_pres_extensions E p F f"
     proof (rule norm_pres_extensionI2)
       have "is_vectorspace F" ..
       thus "is_subspace F F" ..
     qed (blast!)+ 
-    thus "graph F f \\<in> M" by (simp!)
+    thus "graph F f \<in> M" by (simp!)
   qed
   thus ?thesis
   proof
-    fix g assume "g \\<in> M" "\\<forall>x \\<in> M. g \\<subseteq> x --> g = x"
+    fix g assume "g \<in> M" "\<forall>x \<in> M. g \<subseteq> x --> g = x"
     -- {* We consider such a maximal element $g \in M$. \skp *}
     obtain H h where "graph H h = g" "is_linearform H h" 
-      "is_subspace H E" "is_subspace F H" "graph F f \\<subseteq> graph H h" 
-      "\\<forall>x \\<in> H. h x <= p x" 
+      "is_subspace H E" "is_subspace F H" "graph F f \<subseteq> graph H h" 
+      "\<forall>x \<in> H. h x <= p x" 
       -- {* $g$ is a norm-preserving extension of $f$, in other words: *}
       -- {* $g$ is the graph of some linear form $h$ defined on a subspace $H$ of $E$, *}
       -- {* and $h$ is an extension of $f$ that is again bounded by $p$. \skp *}
     proof -
-      have "\\<exists>H h. graph H h = g \\<and> is_linearform H h 
-        \\<and> is_subspace H E \\<and> is_subspace F H
-        \\<and> graph F f \\<subseteq> graph H h
-        \\<and> (\\<forall>x \\<in> H. h x <= p x)" 
+      have "\<exists>H h. graph H h = g \<and> is_linearform H h 
+        \<and> is_subspace H E \<and> is_subspace F H
+        \<and> graph F f \<subseteq> graph H h
+        \<and> (\<forall>x \<in> H. h x <= p x)" 
         by (simp! add: norm_pres_extension_D)
       thus ?thesis by (elim exE conjE) rule
     qed
@@ -144,39 +144,39 @@
     have "H = E"
     -- {* We show that $h$ is defined on whole $E$ by classical contradiction. \skp *} 
     proof (rule classical)
-      assume "H \\<noteq> E"
+      assume "H \<noteq> E"
       -- {* Assume $h$ is not defined on whole $E$. Then show that $h$ can be extended *}
       -- {* in a norm-preserving way to a function $h'$ with the graph $g'$. \skp *}
-      have "\\<exists>g' \\<in> M. g \\<subseteq> g' \\<and> g \\<noteq> g'"
+      have "\<exists>g' \<in> M. g \<subseteq> g' \<and> g \<noteq> g'"
       proof -
-        obtain x' where "x' \\<in> E" "x' \\<notin> H" 
+        obtain x' where "x' \<in> E" "x' \<notin> H" 
         -- {* Pick $x' \in E \setminus H$. \skp *}
         proof -
-          have "\\<exists>x' \\<in> E. x' \\<notin> H"
+          have "\<exists>x' \<in> E. x' \<notin> H"
           proof (rule set_less_imp_diff_not_empty)
-            have "H \\<subseteq> E" ..
-            thus "H \\<subset> E" ..
+            have "H \<subseteq> E" ..
+            thus "H \<subset> E" ..
           qed
           thus ?thesis by blast
         qed
-        have x': "x' \\<noteq> 0"
+        have x': "x' \<noteq> 0"
         proof (rule classical)
           presume "x' = 0"
-          with h have "x' \\<in> H" by simp
+          with h have "x' \<in> H" by simp
           thus ?thesis by contradiction
         qed blast
         def H' == "H + lin x'"
         -- {* Define $H'$ as the direct sum of $H$ and the linear closure of $x'$. \skp *}
-        obtain xi where "\\<forall>y \\<in> H. - p (y + x') - h y <= xi 
-                          \\<and> xi <= p (y + x') - h y" 
+        obtain xi where "\<forall>y \<in> H. - p (y + x') - h y <= xi 
+                          \<and> xi <= p (y + x') - h y" 
         -- {* Pick a real number $\xi$ that fulfills certain inequations; this will *}
         -- {* be used to establish that $h'$ is a norm-preserving extension of $h$. 
            \label{ex-xi-use}\skp *}
         proof -
-          from h have "\\<exists>xi. \\<forall>y \\<in> H. - p (y + x') - h y <= xi 
-                          \\<and> xi <= p (y + x') - h y" 
+          from h have "\<exists>xi. \<forall>y \<in> H. - p (y + x') - h y <= xi 
+                          \<and> xi <= p (y + x') - h y" 
           proof (rule ex_xi)
-            fix u v assume "u \\<in> H" "v \\<in> H"
+            fix u v assume "u \<in> H" "v \<in> H"
             from h have "h v - h u = h (v - u)"
               by (simp! add: linearform_diff)
             also have "... <= p (v - u)"
@@ -197,25 +197,25 @@
           thus ?thesis by rule rule
         qed
 
-        def h' == "\\<lambda>x. let (y,a) = SOME (y,a). x = y + a \\<cdot> x' \\<and> y \\<in> H
+        def h' == "\<lambda>x. let (y,a) = SOME (y,a). x = y + a \<cdot> x' \<and> y \<in> H
                        in (h y) + a * xi"
         -- {* Define the extension $h'$ of $h$ to $H'$ using $\xi$. \skp *}
         show ?thesis
         proof
-          show "g \\<subseteq> graph H' h' \\<and> g \\<noteq> graph H' h'" 
+          show "g \<subseteq> graph H' h' \<and> g \<noteq> graph H' h'" 
           -- {* Show that $h'$ is an extension of $h$ \dots \skp *}
           proof
-            show "g \\<subseteq> graph H' h'"
+            show "g \<subseteq> graph H' h'"
             proof -
-              have  "graph H h \\<subseteq> graph H' h'"
+              have  "graph H h \<subseteq> graph H' h'"
               proof (rule graph_extI)
-                fix t assume "t \\<in> H" 
-                have "(SOME (y, a). t = y + a \\<cdot> x' \\<and> y \\<in> H)
+                fix t assume "t \<in> H" 
+                have "(SOME (y, a). t = y + a \<cdot> x' \<and> y \<in> H)
                      = (t, #0)"
                   by (rule decomp_H'_H) (assumption+, rule x')
                 thus "h t = h' t" by (simp! add: Let_def)
               next
-                show "H \\<subseteq> H'"
+                show "H \<subseteq> H'"
                 proof (rule subspace_subset)
                   show "is_subspace H H'"
                   proof (unfold H'_def, rule subspace_vs_sum1)
@@ -226,29 +226,29 @@
               qed 
               thus ?thesis by (simp!)
             qed
-            show "g \\<noteq> graph H' h'"
+            show "g \<noteq> graph H' h'"
             proof -
-              have "graph H h \\<noteq> graph H' h'"
+              have "graph H h \<noteq> graph H' h'"
               proof
                 assume e: "graph H h = graph H' h'"
-                have "x' \\<in> H'" 
+                have "x' \<in> H'" 
                 proof (unfold H'_def, rule vs_sumI)
                   show "x' = 0 + x'" by (simp!)
-                  from h show "0 \\<in> H" ..
-                  show "x' \\<in> lin x'" by (rule x_lin_x)
+                  from h show "0 \<in> H" ..
+                  show "x' \<in> lin x'" by (rule x_lin_x)
                 qed
-                hence "(x', h' x') \\<in> graph H' h'" ..
-                with e have "(x', h' x') \\<in> graph H h" by simp
-                hence "x' \\<in> H" ..
+                hence "(x', h' x') \<in> graph H' h'" ..
+                with e have "(x', h' x') \<in> graph H h" by simp
+                hence "x' \<in> H" ..
                 thus False by contradiction
               qed
               thus ?thesis by (simp!)
             qed
           qed
-          show "graph H' h' \\<in> M" 
+          show "graph H' h' \<in> M" 
           -- {* and $h'$ is norm-preserving. \skp *}
           proof -
-            have "graph H' h' \\<in> norm_pres_extensions E p F f"
+            have "graph H' h' \<in> norm_pres_extensions E p F f"
             proof (rule norm_pres_extensionI2)
               show "is_linearform H' h'"
                 by (rule h'_lf) (simp! add: x')+
@@ -261,47 +261,47 @@
               finally (subspace_trans [OF _ h]) 
               show f_h': "is_subspace F H'" .
             
-              show "graph F f \\<subseteq> graph H' h'"
+              show "graph F f \<subseteq> graph H' h'"
               proof (rule graph_extI)
-                fix x assume "x \\<in> F"
+                fix x assume "x \<in> F"
                 have "f x = h x" ..
                 also have " ... = h x + #0 * xi" by simp
                 also 
                 have "... = (let (y,a) = (x, #0) in h y + a * xi)"
                   by (simp add: Let_def)
                 also have 
-                  "(x, #0) = (SOME (y, a). x = y + a \\<cdot> x' \\<and> y \\<in> H)"
+                  "(x, #0) = (SOME (y, a). x = y + a \<cdot> x' \<and> y \<in> H)"
                   by (rule decomp_H'_H [RS sym]) (simp! add: x')+
                 also have 
-                  "(let (y,a) = (SOME (y,a). x = y + a \\<cdot> x' \\<and> y \\<in> H)
+                  "(let (y,a) = (SOME (y,a). x = y + a \<cdot> x' \<and> y \<in> H)
                     in h y + a * xi) = h' x" by (simp!)
                 finally show "f x = h' x" .
               next
-                from f_h' show "F \\<subseteq> H'" ..
+                from f_h' show "F \<subseteq> H'" ..
               qed
             
-              show "\\<forall>x \\<in> H'. h' x <= p x"
+              show "\<forall>x \<in> H'. h' x <= p x"
                 by (rule h'_norm_pres) (assumption+, rule x')
             qed
-            thus "graph H' h' \\<in> M" by (simp!)
+            thus "graph H' h' \<in> M" by (simp!)
           qed
         qed
       qed
-      hence "\\<not> (\\<forall>x \\<in> M. g \\<subseteq> x --> g = x)" by simp
+      hence "\<not> (\<forall>x \<in> M. g \<subseteq> x --> g = x)" by simp
 	-- {* So the graph $g$ of $h$ cannot be maximal. Contradiction! \skp *}
       thus "H = E" by contradiction
     qed
-    thus "\\<exists>h. is_linearform E h \\<and> (\\<forall>x \\<in> F. h x = f x) 
-      \\<and> (\\<forall>x \\<in> E. h x <= p x)" 
+    thus "\<exists>h. is_linearform E h \<and> (\<forall>x \<in> F. h x = f x) 
+      \<and> (\<forall>x \<in> E. h x <= p x)" 
     proof (intro exI conjI)
       assume eq: "H = E"
       from eq show "is_linearform E h" by (simp!)
-      show "\\<forall>x \\<in> F. h x = f x"
+      show "\<forall>x \<in> F. h x = f x"
       proof
-	fix x assume "x \\<in> F" have "f x = h x " ..
+	fix x assume "x \<in> F" have "f x = h x " ..
 	thus "h x = f x" ..
       qed
-      from eq show "\\<forall>x \\<in> E. h x <= p x" by (force!)
+      from eq show "\<forall>x \<in> E. h x <= p x" by (force!)
     qed
   qed
 qed
@@ -322,21 +322,21 @@
 
 theorem abs_HahnBanach:
 "[| is_vectorspace E; is_subspace F E; is_linearform F f; 
-is_seminorm E p; \\<forall>x \\<in> F. |f x| <= p x |]
-==> \\<exists>g. is_linearform E g \\<and> (\\<forall>x \\<in> F. g x = f x)
- \\<and> (\\<forall>x \\<in> E. |g x| <= p x)"
+is_seminorm E p; \<forall>x \<in> F. |f x| <= p x |]
+==> \<exists>g. is_linearform E g \<and> (\<forall>x \<in> F. g x = f x)
+ \<and> (\<forall>x \<in> E. |g x| <= p x)"
 proof -
 assume "is_vectorspace E" "is_subspace F E" "is_seminorm E p" 
-"is_linearform F f"  "\\<forall>x \\<in> F. |f x| <= p x"
-have "\\<forall>x \\<in> F. f x <= p x"  by (rule abs_ineq_iff [RS iffD1])
-hence "\\<exists>g. is_linearform E g \\<and> (\\<forall>x \\<in> F. g x = f x) 
-          \\<and> (\\<forall>x \\<in> E. g x <= p x)"
+"is_linearform F f"  "\<forall>x \<in> F. |f x| <= p x"
+have "\<forall>x \<in> F. f x <= p x"  by (rule abs_ineq_iff [RS iffD1])
+hence "\<exists>g. is_linearform E g \<and> (\<forall>x \<in> F. g x = f x) 
+          \<and> (\<forall>x \<in> E. g x <= p x)"
 by (simp! only: HahnBanach)
 thus ?thesis 
 proof (elim exE conjE)
-fix g assume "is_linearform E g" "\\<forall>x \\<in> F. g x = f x" 
-              "\\<forall>x \\<in> E. g x <= p x"
-hence "\\<forall>x \\<in> E. |g x| <= p x"
+fix g assume "is_linearform E g" "\<forall>x \<in> F. g x = f x" 
+              "\<forall>x \<in> E. g x <= p x"
+hence "\<forall>x \<in> E. |g x| <= p x"
   by (simp! add: abs_ineq_iff [OF subspace_refl])
 thus ?thesis by (intro exI conjI)
 qed
@@ -351,10 +351,10 @@
 theorem norm_HahnBanach:
 "[| is_normed_vectorspace E norm; is_subspace F E; 
 is_linearform F f; is_continuous F norm f |] 
-==> \\<exists>g. is_linearform E g
-     \\<and> is_continuous E norm g 
-     \\<and> (\\<forall>x \\<in> F. g x = f x) 
-     \\<and> \\<parallel>g\\<parallel>E,norm = \\<parallel>f\\<parallel>F,norm"
+==> \<exists>g. is_linearform E g
+     \<and> is_continuous E norm g 
+     \<and> (\<forall>x \<in> F. g x = f x) 
+     \<and> \<parallel>g\<parallel>E,norm = \<parallel>f\<parallel>F,norm"
 proof -
 assume e_norm: "is_normed_vectorspace E norm"
 assume f: "is_subspace F E" "is_linearform F f"
@@ -368,32 +368,32 @@
 \end{matharray}
 *}
 
-def p == "\\<lambda>x. \\<parallel>f\\<parallel>F,norm * norm x"
+def p == "\<lambda>x. \<parallel>f\<parallel>F,norm * norm x"
 
 txt{* $p$ is a seminorm on $E$: *}
 
 have q: "is_seminorm E p"
 proof
-fix x y a assume "x \\<in> E" "y \\<in> E"
+fix x y a assume "x \<in> E" "y \<in> E"
 
 txt{* $p$ is positive definite: *}
 
 show "#0 <= p x"
 proof (unfold p_def, rule real_le_mult_order1a)
-  from f_cont f_norm show "#0 <= \\<parallel>f\\<parallel>F,norm" ..
+  from f_cont f_norm show "#0 <= \<parallel>f\<parallel>F,norm" ..
   show "#0 <= norm x" ..
 qed
 
 txt{* $p$ is absolutely homogenous: *}
 
-show "p (a \\<cdot> x) = |a| * p x"
+show "p (a \<cdot> x) = |a| * p x"
 proof - 
-  have "p (a \\<cdot> x) = \\<parallel>f\\<parallel>F,norm * norm (a \\<cdot> x)"
+  have "p (a \<cdot> x) = \<parallel>f\<parallel>F,norm * norm (a \<cdot> x)"
     by (simp!)
-  also have "norm (a \\<cdot> x) = |a| * norm x" 
+  also have "norm (a \<cdot> x) = |a| * norm x" 
     by (rule normed_vs_norm_abs_homogenous)
-  also have "\\<parallel>f\\<parallel>F,norm * ( |a| * norm x ) 
-    = |a| * (\\<parallel>f\\<parallel>F,norm * norm x)"
+  also have "\<parallel>f\<parallel>F,norm * ( |a| * norm x ) 
+    = |a| * (\<parallel>f\<parallel>F,norm * norm x)"
     by (simp! only: real_mult_left_commute)
   also have "... = |a| * p x" by (simp!)
   finally show ?thesis .
@@ -403,16 +403,16 @@
 
 show "p (x + y) <= p x + p y"
 proof -
-  have "p (x + y) = \\<parallel>f\\<parallel>F,norm * norm (x + y)"
+  have "p (x + y) = \<parallel>f\<parallel>F,norm * norm (x + y)"
     by (simp!)
   also 
-  have "... <= \\<parallel>f\\<parallel>F,norm * (norm x + norm y)"
+  have "... <= \<parallel>f\<parallel>F,norm * (norm x + norm y)"
   proof (rule real_mult_le_le_mono1a)
-    from f_cont f_norm show "#0 <= \\<parallel>f\\<parallel>F,norm" ..
+    from f_cont f_norm show "#0 <= \<parallel>f\<parallel>F,norm" ..
     show "norm (x + y) <= norm x + norm y" ..
   qed
-  also have "... = \\<parallel>f\\<parallel>F,norm * norm x 
-                    + \\<parallel>f\\<parallel>F,norm * norm y"
+  also have "... = \<parallel>f\<parallel>F,norm * norm x 
+                    + \<parallel>f\<parallel>F,norm * norm y"
     by (simp! only: real_add_mult_distrib2)
   finally show ?thesis by (simp!)
 qed
@@ -420,9 +420,9 @@
 
 txt{* $f$ is bounded by $p$. *} 
 
-have "\\<forall>x \\<in> F. |f x| <= p x"
+have "\<forall>x \<in> F. |f x| <= p x"
 proof
-fix x assume "x \\<in> F"
+fix x assume "x \<in> F"
  from f_norm show "|f x| <= p x" 
    by (simp! add: norm_fx_le_norm_f_norm_x)
 qed
@@ -434,20 +434,20 @@
 $g$ on the whole vector space $E$. *}
 
 with e f q 
-have "\\<exists>g. is_linearform E g \\<and> (\\<forall>x \\<in> F. g x = f x) 
-        \\<and> (\\<forall>x \\<in> E. |g x| <= p x)"
+have "\<exists>g. is_linearform E g \<and> (\<forall>x \<in> F. g x = f x) 
+        \<and> (\<forall>x \<in> E. |g x| <= p x)"
 by (simp! add: abs_HahnBanach)
 
 thus ?thesis
 proof (elim exE conjE) 
 fix g
-assume "is_linearform E g" and a: "\\<forall>x \\<in> F. g x = f x" 
-   and b: "\\<forall>x \\<in> E. |g x| <= p x"
+assume "is_linearform E g" and a: "\<forall>x \<in> F. g x = f x" 
+   and b: "\<forall>x \<in> E. |g x| <= p x"
 
-show "\\<exists>g. is_linearform E g 
-        \\<and> is_continuous E norm g 
-        \\<and> (\\<forall>x \\<in> F. g x = f x) 
-        \\<and> \\<parallel>g\\<parallel>E,norm = \\<parallel>f\\<parallel>F,norm"
+show "\<exists>g. is_linearform E g 
+        \<and> is_continuous E norm g 
+        \<and> (\<forall>x \<in> F. g x = f x) 
+        \<and> \<parallel>g\<parallel>E,norm = \<parallel>f\<parallel>F,norm"
 proof (intro exI conjI)
 
 txt{* We furthermore have to show that 
@@ -455,15 +455,15 @@
 
   show g_cont: "is_continuous E norm g"
   proof
-    fix x assume "x \\<in> E"
-    with b show "|g x| <= \\<parallel>f\\<parallel>F,norm * norm x"
+    fix x assume "x \<in> E"
+    with b show "|g x| <= \<parallel>f\<parallel>F,norm * norm x"
       by (simp add: p_def) 
   qed 
 
   txt {* To complete the proof, we show that 
   $\fnorm g = \fnorm f$. \label{order_antisym} *}
 
-  show "\\<parallel>g\\<parallel>E,norm = \\<parallel>f\\<parallel>F,norm"
+  show "\<parallel>g\<parallel>E,norm = \<parallel>f\<parallel>F,norm"
     (is "?L = ?R")
   proof (rule order_antisym)
 
@@ -478,36 +478,36 @@
     \end{matharray}
     *}
  
-    have "\\<forall>x \\<in> E. |g x| <= \\<parallel>f\\<parallel>F,norm * norm x"
+    have "\<forall>x \<in> E. |g x| <= \<parallel>f\<parallel>F,norm * norm x"
     proof
-      fix x assume "x \\<in> E" 
-      show "|g x| <= \\<parallel>f\\<parallel>F,norm * norm x"
+      fix x assume "x \<in> E" 
+      show "|g x| <= \<parallel>f\<parallel>F,norm * norm x"
         by (simp!)
     qed
 
     with g_cont e_norm show "?L <= ?R"
     proof (rule fnorm_le_ub)
-      from f_cont f_norm show "#0 <= \\<parallel>f\\<parallel>F,norm" ..
+      from f_cont f_norm show "#0 <= \<parallel>f\<parallel>F,norm" ..
     qed
 
     txt{* The other direction is achieved by a similar 
     argument. *}
 
-    have "\\<forall>x \\<in> F. |f x| <= \\<parallel>g\\<parallel>E,norm * norm x"
+    have "\<forall>x \<in> F. |f x| <= \<parallel>g\<parallel>E,norm * norm x"
     proof
-      fix x assume "x \\<in> F" 
+      fix x assume "x \<in> F" 
       from a have "g x = f x" ..
       hence "|f x| = |g x|" by simp
       also from g_cont
-      have "... <= \\<parallel>g\\<parallel>E,norm * norm x"
+      have "... <= \<parallel>g\<parallel>E,norm * norm x"
       proof (rule norm_fx_le_norm_f_norm_x)
-        show "x \\<in> E" ..
+        show "x \<in> E" ..
       qed
-      finally show "|f x| <= \\<parallel>g\\<parallel>E,norm * norm x" .
+      finally show "|f x| <= \<parallel>g\<parallel>E,norm * norm x" .
     qed 
     thus "?R <= ?L" 
     proof (rule fnorm_le_ub [OF f_cont f_norm])
-      from g_cont show "#0 <= \\<parallel>g\\<parallel>E,norm" ..
+      from g_cont show "#0 <= \<parallel>g\<parallel>E,norm" ..
     qed
   qed
 qed