| changeset 22384 | 33a46e6c7f04 |
| parent 21588 | cd0dc678a205 |
| child 22808 | a7daa74e2980 |
--- a/src/HOL/Algebra/abstract/Ring2.thy Fri Mar 02 12:38:58 2007 +0100 +++ b/src/HOL/Algebra/abstract/Ring2.thy Fri Mar 02 15:43:15 2007 +0100 @@ -256,7 +256,7 @@ proof (induct n) case 0 show ?case by simp next - case Suc thus ?case by (simp add: semigroup_add_class.add_assoc) + case Suc thus ?case by (simp add: add_assoc) qed lemma natsum_cong [cong]: