--- a/src/HOL/Algebra/UnivPoly.thy	Sat Aug 29 14:31:39 2009 +0200
+++ b/src/HOL/Algebra/UnivPoly.thy	Mon Aug 31 14:09:42 2009 +0200
@@ -592,15 +592,14 @@
         proof (cases "n = k")
           case True
           then have "\<zero> = (\<Oplus>i \<in> {..<n} \<union> {n}. ?s i)"
-            by (simp cong: R.finsum_cong add: ivl_disj_int_singleton Pi_def)
+            by (simp cong: R.finsum_cong add: Pi_def)
           also from True have "... = (\<Oplus>i \<in> {..k}. ?s i)"
             by (simp only: ivl_disj_un_singleton)
           finally show ?thesis .
         next
           case False with n_le_k have n_less_k: "n < k" by arith
           with neq have "\<zero> = (\<Oplus>i \<in> {..<n} \<union> {n}. ?s i)"
-            by (simp add: R.finsum_Un_disjoint f1 f2
-              ivl_disj_int_singleton Pi_def del: Un_insert_right)
+            by (simp add: R.finsum_Un_disjoint f1 f2 Pi_def del: Un_insert_right)
           also have "... = (\<Oplus>i \<in> {..n}. ?s i)"
             by (simp only: ivl_disj_un_singleton)
           also from n_less_k neq have "... = (\<Oplus>i \<in> {..n} \<union> {n<..k}. ?s i)"
@@ -939,8 +938,7 @@
     also have "...= (\<Oplus>i \<in> {deg R p} \<union> {deg R p <.. deg R p + deg R q}. ?s i)"
       by (simp only: ivl_disj_un_singleton)
     also have "... = coeff P p (deg R p) \<otimes> coeff P q (deg R q)"
-      by (simp cong: R.finsum_cong
-	add: ivl_disj_int_singleton deg_aboveD R Pi_def)
+      by (simp cong: R.finsum_cong add: deg_aboveD R Pi_def)
     finally have "(\<Oplus>i \<in> {.. deg R p + deg R q}. ?s i)
       = coeff P p (deg R p) \<otimes> coeff P q (deg R q)" .
     with nz show "(\<Oplus>i \<in> {.. deg R p + deg R q}. ?s i) ~= \<zero>"
@@ -983,8 +981,7 @@
     have "... = coeff P (\<Oplus>\<^bsub>P\<^esub> i \<in> {..<k} \<union> {k}. ?s i) k"
       by (simp only: ivl_disj_un_singleton)
     also have "... = coeff P p k"
-      by (simp cong: R.finsum_cong
-	add: ivl_disj_int_singleton coeff_finsum deg_aboveD R RR Pi_def)
+      by (simp cong: R.finsum_cong add: coeff_finsum deg_aboveD R RR Pi_def)
     finally show ?thesis .
   next
     case False
@@ -992,8 +989,7 @@
           coeff P (\<Oplus>\<^bsub>P\<^esub> i \<in> {..<deg R p} \<union> {deg R p}. ?s i) k"
       by (simp only: ivl_disj_un_singleton)
     also from False have "... = coeff P p k"
-      by (simp cong: R.finsum_cong
-	add: ivl_disj_int_singleton coeff_finsum deg_aboveD R Pi_def)
+      by (simp cong: R.finsum_cong add: coeff_finsum deg_aboveD R Pi_def)
     finally show ?thesis .
   qed
 qed (simp_all add: R Pi_def)