src/HOL/Real_Vector_Spaces.thy
changeset 53381 355a4cac5440
parent 53374 a14d2a854c02
child 53600 8fda7ad57466
--- a/src/HOL/Real_Vector_Spaces.thy	Tue Sep 03 19:58:00 2013 +0200
+++ b/src/HOL/Real_Vector_Spaces.thy	Tue Sep 03 22:04:23 2013 +0200
@@ -833,7 +833,8 @@
   show "(open :: real set \<Rightarrow> bool) = generate_topology (range lessThan \<union> range greaterThan)"
   proof (rule ext, safe)
     fix S :: "real set" assume "open S"
-    then guess f unfolding open_real_def bchoice_iff ..
+    then obtain f where "\<forall>x\<in>S. 0 < f x \<and> (\<forall>y. dist y x < f x \<longrightarrow> y \<in> S)"
+      unfolding open_real_def bchoice_iff ..
     then have *: "S = (\<Union>x\<in>S. {x - f x <..} \<inter> {..< x + f x})"
       by (fastforce simp: dist_real_def)
     show "generate_topology (range lessThan \<union> range greaterThan) S"
@@ -1525,7 +1526,8 @@
   with limseq obtain N :: nat where N: "\<And>n. N \<le> n \<Longrightarrow> \<bar>f (real n) - y\<bar> < e"
     by (auto simp: LIMSEQ_def dist_real_def)
   { fix x :: real
-    from ex_le_of_nat[of x] guess n ..
+    obtain n where "x \<le> real_of_nat n"
+      using ex_le_of_nat[of x] ..
     note monoD[OF mono this]
     also have "f (real_of_nat n) \<le> y"
       by (rule LIMSEQ_le_const[OF limseq])