src/HOL/Lambda/NormalForm.thy
changeset 39197 35fcab3da1b7
parent 39196 6ceb8d38bc9e
parent 39166 19efc2af3e6c
child 39200 bb93713b0925
--- a/src/HOL/Lambda/NormalForm.thy	Tue Sep 07 11:51:53 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,247 +0,0 @@
-(*  Title:      HOL/Lambda/NormalForm.thy
-    Author:     Stefan Berghofer, TU Muenchen, 2003
-*)
-
-header {* Inductive characterization of lambda terms in normal form *}
-
-theory NormalForm
-imports ListBeta
-begin
-
-subsection {* Terms in normal form *}
-
-definition
-  listall :: "('a \<Rightarrow> bool) \<Rightarrow> 'a list \<Rightarrow> bool" where
-  "listall P xs \<equiv> (\<forall>i. i < length xs \<longrightarrow> P (xs ! i))"
-
-declare listall_def [extraction_expand_def]
-
-theorem listall_nil: "listall P []"
-  by (simp add: listall_def)
-
-theorem listall_nil_eq [simp]: "listall P [] = True"
-  by (iprover intro: listall_nil)
-
-theorem listall_cons: "P x \<Longrightarrow> listall P xs \<Longrightarrow> listall P (x # xs)"
-  apply (simp add: listall_def)
-  apply (rule allI impI)+
-  apply (case_tac i)
-  apply simp+
-  done
-
-theorem listall_cons_eq [simp]: "listall P (x # xs) = (P x \<and> listall P xs)"
-  apply (rule iffI)
-  prefer 2
-  apply (erule conjE)
-  apply (erule listall_cons)
-  apply assumption
-  apply (unfold listall_def)
-  apply (rule conjI)
-  apply (erule_tac x=0 in allE)
-  apply simp
-  apply simp
-  apply (rule allI)
-  apply (erule_tac x="Suc i" in allE)
-  apply simp
-  done
-
-lemma listall_conj1: "listall (\<lambda>x. P x \<and> Q x) xs \<Longrightarrow> listall P xs"
-  by (induct xs) simp_all
-
-lemma listall_conj2: "listall (\<lambda>x. P x \<and> Q x) xs \<Longrightarrow> listall Q xs"
-  by (induct xs) simp_all
-
-lemma listall_app: "listall P (xs @ ys) = (listall P xs \<and> listall P ys)"
-  apply (induct xs)
-   apply (rule iffI, simp, simp)
-  apply (rule iffI, simp, simp)
-  done
-
-lemma listall_snoc [simp]: "listall P (xs @ [x]) = (listall P xs \<and> P x)"
-  apply (rule iffI)
-  apply (simp add: listall_app)+
-  done
-
-lemma listall_cong [cong, extraction_expand]:
-  "xs = ys \<Longrightarrow> listall P xs = listall P ys"
-  -- {* Currently needed for strange technical reasons *}
-  by (unfold listall_def) simp
-
-text {*
-@{term "listsp"} is equivalent to @{term "listall"}, but cannot be
-used for program extraction.
-*}
-
-lemma listall_listsp_eq: "listall P xs = listsp P xs"
-  by (induct xs) (auto intro: listsp.intros)
-
-inductive NF :: "dB \<Rightarrow> bool"
-where
-  App: "listall NF ts \<Longrightarrow> NF (Var x \<degree>\<degree> ts)"
-| Abs: "NF t \<Longrightarrow> NF (Abs t)"
-monos listall_def
-
-lemma nat_eq_dec: "\<And>n::nat. m = n \<or> m \<noteq> n"
-  apply (induct m)
-  apply (case_tac n)
-  apply (case_tac [3] n)
-  apply (simp only: nat.simps, iprover?)+
-  done
-
-lemma nat_le_dec: "\<And>n::nat. m < n \<or> \<not> (m < n)"
-  apply (induct m)
-  apply (case_tac n)
-  apply (case_tac [3] n)
-  apply (simp del: simp_thms, iprover?)+
-  done
-
-lemma App_NF_D: assumes NF: "NF (Var n \<degree>\<degree> ts)"
-  shows "listall NF ts" using NF
-  by cases simp_all
-
-
-subsection {* Properties of @{text NF} *}
-
-lemma Var_NF: "NF (Var n)"
-  apply (subgoal_tac "NF (Var n \<degree>\<degree> [])")
-   apply simp
-  apply (rule NF.App)
-  apply simp
-  done
-
-lemma Abs_NF:
-  assumes NF: "NF (Abs t \<degree>\<degree> ts)"
-  shows "ts = []" using NF
-proof cases
-  case (App us i)
-  thus ?thesis by (simp add: Var_apps_neq_Abs_apps [THEN not_sym])
-next
-  case (Abs u)
-  thus ?thesis by simp
-qed
-
-lemma subst_terms_NF: "listall NF ts \<Longrightarrow>
-    listall (\<lambda>t. \<forall>i j. NF (t[Var i/j])) ts \<Longrightarrow>
-    listall NF (map (\<lambda>t. t[Var i/j]) ts)"
-  by (induct ts) simp_all
-
-lemma subst_Var_NF: "NF t \<Longrightarrow> NF (t[Var i/j])"
-  apply (induct arbitrary: i j set: NF)
-  apply simp
-  apply (frule listall_conj1)
-  apply (drule listall_conj2)
-  apply (drule_tac i=i and j=j in subst_terms_NF)
-  apply assumption
-  apply (rule_tac m=x and n=j in nat_eq_dec [THEN disjE, standard])
-  apply simp
-  apply (erule NF.App)
-  apply (rule_tac m=j and n=x in nat_le_dec [THEN disjE, standard])
-  apply simp
-  apply (iprover intro: NF.App)
-  apply simp
-  apply (iprover intro: NF.App)
-  apply simp
-  apply (iprover intro: NF.Abs)
-  done
-
-lemma app_Var_NF: "NF t \<Longrightarrow> \<exists>t'. t \<degree> Var i \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<and> NF t'"
-  apply (induct set: NF)
-  apply (simplesubst app_last)  --{*Using @{text subst} makes extraction fail*}
-  apply (rule exI)
-  apply (rule conjI)
-  apply (rule rtranclp.rtrancl_refl)
-  apply (rule NF.App)
-  apply (drule listall_conj1)
-  apply (simp add: listall_app)
-  apply (rule Var_NF)
-  apply (rule exI)
-  apply (rule conjI)
-  apply (rule rtranclp.rtrancl_into_rtrancl)
-  apply (rule rtranclp.rtrancl_refl)
-  apply (rule beta)
-  apply (erule subst_Var_NF)
-  done
-
-lemma lift_terms_NF: "listall NF ts \<Longrightarrow>
-    listall (\<lambda>t. \<forall>i. NF (lift t i)) ts \<Longrightarrow>
-    listall NF (map (\<lambda>t. lift t i) ts)"
-  by (induct ts) simp_all
-
-lemma lift_NF: "NF t \<Longrightarrow> NF (lift t i)"
-  apply (induct arbitrary: i set: NF)
-  apply (frule listall_conj1)
-  apply (drule listall_conj2)
-  apply (drule_tac i=i in lift_terms_NF)
-  apply assumption
-  apply (rule_tac m=x and n=i in nat_le_dec [THEN disjE, standard])
-  apply simp
-  apply (rule NF.App)
-  apply assumption
-  apply simp
-  apply (rule NF.App)
-  apply assumption
-  apply simp
-  apply (rule NF.Abs)
-  apply simp
-  done
-
-text {*
-@{term NF} characterizes exactly the terms that are in normal form.
-*}
-  
-lemma NF_eq: "NF t = (\<forall>t'. \<not> t \<rightarrow>\<^sub>\<beta> t')"
-proof
-  assume "NF t"
-  then have "\<And>t'. \<not> t \<rightarrow>\<^sub>\<beta> t'"
-  proof induct
-    case (App ts t)
-    show ?case
-    proof
-      assume "Var t \<degree>\<degree> ts \<rightarrow>\<^sub>\<beta> t'"
-      then obtain rs where "ts => rs"
-        by (iprover dest: head_Var_reduction)
-      with App show False
-        by (induct rs arbitrary: ts) auto
-    qed
-  next
-    case (Abs t)
-    show ?case
-    proof
-      assume "Abs t \<rightarrow>\<^sub>\<beta> t'"
-      then show False using Abs by cases simp_all
-    qed
-  qed
-  then show "\<forall>t'. \<not> t \<rightarrow>\<^sub>\<beta> t'" ..
-next
-  assume H: "\<forall>t'. \<not> t \<rightarrow>\<^sub>\<beta> t'"
-  then show "NF t"
-  proof (induct t rule: Apps_dB_induct)
-    case (1 n ts)
-    then have "\<forall>ts'. \<not> ts => ts'"
-      by (iprover intro: apps_preserves_betas)
-    with 1(1) have "listall NF ts"
-      by (induct ts) auto
-    then show ?case by (rule NF.App)
-  next
-    case (2 u ts)
-    show ?case
-    proof (cases ts)
-      case Nil
-      from 2 have "\<forall>u'. \<not> u \<rightarrow>\<^sub>\<beta> u'"
-        by (auto intro: apps_preserves_beta)
-      then have "NF u" by (rule 2)
-      then have "NF (Abs u)" by (rule NF.Abs)
-      with Nil show ?thesis by simp
-    next
-      case (Cons r rs)
-      have "Abs u \<degree> r \<rightarrow>\<^sub>\<beta> u[r/0]" ..
-      then have "Abs u \<degree> r \<degree>\<degree> rs \<rightarrow>\<^sub>\<beta> u[r/0] \<degree>\<degree> rs"
-        by (rule apps_preserves_beta)
-      with Cons have "Abs u \<degree>\<degree> ts \<rightarrow>\<^sub>\<beta> u[r/0] \<degree>\<degree> rs"
-        by simp
-      with 2 show ?thesis by iprover
-    qed
-  qed
-qed
-
-end