src/HOL/Lambda/WeakNorm.thy
changeset 39197 35fcab3da1b7
parent 39196 6ceb8d38bc9e
parent 39166 19efc2af3e6c
child 39200 bb93713b0925
--- a/src/HOL/Lambda/WeakNorm.thy	Tue Sep 07 11:51:53 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,515 +0,0 @@
-(*  Title:      HOL/Lambda/WeakNorm.thy
-    Author:     Stefan Berghofer
-    Copyright   2003 TU Muenchen
-*)
-
-header {* Weak normalization for simply-typed lambda calculus *}
-
-theory WeakNorm
-imports Type NormalForm Code_Integer
-begin
-
-text {*
-Formalization by Stefan Berghofer. Partly based on a paper proof by
-Felix Joachimski and Ralph Matthes \cite{Matthes-Joachimski-AML}.
-*}
-
-
-subsection {* Main theorems *}
-
-lemma norm_list:
-  assumes f_compat: "\<And>t t'. t \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<Longrightarrow> f t \<rightarrow>\<^sub>\<beta>\<^sup>* f t'"
-  and f_NF: "\<And>t. NF t \<Longrightarrow> NF (f t)"
-  and uNF: "NF u" and uT: "e \<turnstile> u : T"
-  shows "\<And>Us. e\<langle>i:T\<rangle> \<tturnstile> as : Us \<Longrightarrow>
-    listall (\<lambda>t. \<forall>e T' u i. e\<langle>i:T\<rangle> \<turnstile> t : T' \<longrightarrow>
-      NF u \<longrightarrow> e \<turnstile> u : T \<longrightarrow> (\<exists>t'. t[u/i] \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<and> NF t')) as \<Longrightarrow>
-    \<exists>as'. \<forall>j. Var j \<degree>\<degree> map (\<lambda>t. f (t[u/i])) as \<rightarrow>\<^sub>\<beta>\<^sup>*
-      Var j \<degree>\<degree> map f as' \<and> NF (Var j \<degree>\<degree> map f as')"
-  (is "\<And>Us. _ \<Longrightarrow> listall ?R as \<Longrightarrow> \<exists>as'. ?ex Us as as'")
-proof (induct as rule: rev_induct)
-  case (Nil Us)
-  with Var_NF have "?ex Us [] []" by simp
-  thus ?case ..
-next
-  case (snoc b bs Us)
-  have "e\<langle>i:T\<rangle> \<tturnstile> bs  @ [b] : Us" by fact
-  then obtain Vs W where Us: "Us = Vs @ [W]"
-    and bs: "e\<langle>i:T\<rangle> \<tturnstile> bs : Vs" and bT: "e\<langle>i:T\<rangle> \<turnstile> b : W"
-    by (rule types_snocE)
-  from snoc have "listall ?R bs" by simp
-  with bs have "\<exists>bs'. ?ex Vs bs bs'" by (rule snoc)
-  then obtain bs' where
-    bsred: "\<And>j. Var j \<degree>\<degree> map (\<lambda>t. f (t[u/i])) bs \<rightarrow>\<^sub>\<beta>\<^sup>* Var j \<degree>\<degree> map f bs'"
-    and bsNF: "\<And>j. NF (Var j \<degree>\<degree> map f bs')" by iprover
-  from snoc have "?R b" by simp
-  with bT and uNF and uT have "\<exists>b'. b[u/i] \<rightarrow>\<^sub>\<beta>\<^sup>* b' \<and> NF b'"
-    by iprover
-  then obtain b' where bred: "b[u/i] \<rightarrow>\<^sub>\<beta>\<^sup>* b'" and bNF: "NF b'"
-    by iprover
-  from bsNF [of 0] have "listall NF (map f bs')"
-    by (rule App_NF_D)
-  moreover have "NF (f b')" using bNF by (rule f_NF)
-  ultimately have "listall NF (map f (bs' @ [b']))"
-    by simp
-  hence "\<And>j. NF (Var j \<degree>\<degree> map f (bs' @ [b']))" by (rule NF.App)
-  moreover from bred have "f (b[u/i]) \<rightarrow>\<^sub>\<beta>\<^sup>* f b'"
-    by (rule f_compat)
-  with bsred have
-    "\<And>j. (Var j \<degree>\<degree> map (\<lambda>t. f (t[u/i])) bs) \<degree> f (b[u/i]) \<rightarrow>\<^sub>\<beta>\<^sup>*
-     (Var j \<degree>\<degree> map f bs') \<degree> f b'" by (rule rtrancl_beta_App)
-  ultimately have "?ex Us (bs @ [b]) (bs' @ [b'])" by simp
-  thus ?case ..
-qed
-
-lemma subst_type_NF:
-  "\<And>t e T u i. NF t \<Longrightarrow> e\<langle>i:U\<rangle> \<turnstile> t : T \<Longrightarrow> NF u \<Longrightarrow> e \<turnstile> u : U \<Longrightarrow> \<exists>t'. t[u/i] \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<and> NF t'"
-  (is "PROP ?P U" is "\<And>t e T u i. _ \<Longrightarrow> PROP ?Q t e T u i U")
-proof (induct U)
-  fix T t
-  let ?R = "\<lambda>t. \<forall>e T' u i.
-    e\<langle>i:T\<rangle> \<turnstile> t : T' \<longrightarrow> NF u \<longrightarrow> e \<turnstile> u : T \<longrightarrow> (\<exists>t'. t[u/i] \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<and> NF t')"
-  assume MI1: "\<And>T1 T2. T = T1 \<Rightarrow> T2 \<Longrightarrow> PROP ?P T1"
-  assume MI2: "\<And>T1 T2. T = T1 \<Rightarrow> T2 \<Longrightarrow> PROP ?P T2"
-  assume "NF t"
-  thus "\<And>e T' u i. PROP ?Q t e T' u i T"
-  proof induct
-    fix e T' u i assume uNF: "NF u" and uT: "e \<turnstile> u : T"
-    {
-      case (App ts x e_ T'_ u_ i_)
-      assume "e\<langle>i:T\<rangle> \<turnstile> Var x \<degree>\<degree> ts : T'"
-      then obtain Us
-        where varT: "e\<langle>i:T\<rangle> \<turnstile> Var x : Us \<Rrightarrow> T'"
-        and argsT: "e\<langle>i:T\<rangle> \<tturnstile> ts : Us"
-        by (rule var_app_typesE)
-      from nat_eq_dec show "\<exists>t'. (Var x \<degree>\<degree> ts)[u/i] \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<and> NF t'"
-      proof
-        assume eq: "x = i"
-        show ?thesis
-        proof (cases ts)
-          case Nil
-          with eq have "(Var x \<degree>\<degree> [])[u/i] \<rightarrow>\<^sub>\<beta>\<^sup>* u" by simp
-          with Nil and uNF show ?thesis by simp iprover
-        next
-          case (Cons a as)
-          with argsT obtain T'' Ts where Us: "Us = T'' # Ts"
-            by (cases Us) (rule FalseE, simp+, erule that)
-          from varT and Us have varT: "e\<langle>i:T\<rangle> \<turnstile> Var x : T'' \<Rightarrow> Ts \<Rrightarrow> T'"
-            by simp
-          from varT eq have T: "T = T'' \<Rightarrow> Ts \<Rrightarrow> T'" by cases auto
-          with uT have uT': "e \<turnstile> u : T'' \<Rightarrow> Ts \<Rrightarrow> T'" by simp
-          from argsT Us Cons have argsT': "e\<langle>i:T\<rangle> \<tturnstile> as : Ts" by simp
-          from argsT Us Cons have argT: "e\<langle>i:T\<rangle> \<turnstile> a : T''" by simp
-          from argT uT refl have aT: "e \<turnstile> a[u/i] : T''" by (rule subst_lemma)
-          from App and Cons have "listall ?R as" by simp (iprover dest: listall_conj2)
-          with lift_preserves_beta' lift_NF uNF uT argsT'
-          have "\<exists>as'. \<forall>j. Var j \<degree>\<degree> map (\<lambda>t. lift (t[u/i]) 0) as \<rightarrow>\<^sub>\<beta>\<^sup>*
-            Var j \<degree>\<degree> map (\<lambda>t. lift t 0) as' \<and>
-            NF (Var j \<degree>\<degree> map (\<lambda>t. lift t 0) as')" by (rule norm_list)
-          then obtain as' where
-            asred: "Var 0 \<degree>\<degree> map (\<lambda>t. lift (t[u/i]) 0) as \<rightarrow>\<^sub>\<beta>\<^sup>*
-              Var 0 \<degree>\<degree> map (\<lambda>t. lift t 0) as'"
-            and asNF: "NF (Var 0 \<degree>\<degree> map (\<lambda>t. lift t 0) as')" by iprover
-          from App and Cons have "?R a" by simp
-          with argT and uNF and uT have "\<exists>a'. a[u/i] \<rightarrow>\<^sub>\<beta>\<^sup>* a' \<and> NF a'"
-            by iprover
-          then obtain a' where ared: "a[u/i] \<rightarrow>\<^sub>\<beta>\<^sup>* a'" and aNF: "NF a'" by iprover
-          from uNF have "NF (lift u 0)" by (rule lift_NF)
-          hence "\<exists>u'. lift u 0 \<degree> Var 0 \<rightarrow>\<^sub>\<beta>\<^sup>* u' \<and> NF u'" by (rule app_Var_NF)
-          then obtain u' where ured: "lift u 0 \<degree> Var 0 \<rightarrow>\<^sub>\<beta>\<^sup>* u'" and u'NF: "NF u'"
-            by iprover
-          from T and u'NF have "\<exists>ua. u'[a'/0] \<rightarrow>\<^sub>\<beta>\<^sup>* ua \<and> NF ua"
-          proof (rule MI1)
-            have "e\<langle>0:T''\<rangle> \<turnstile> lift u 0 \<degree> Var 0 : Ts \<Rrightarrow> T'"
-            proof (rule typing.App)
-              from uT' show "e\<langle>0:T''\<rangle> \<turnstile> lift u 0 : T'' \<Rightarrow> Ts \<Rrightarrow> T'" by (rule lift_type)
-              show "e\<langle>0:T''\<rangle> \<turnstile> Var 0 : T''" by (rule typing.Var) simp
-            qed
-            with ured show "e\<langle>0:T''\<rangle> \<turnstile> u' : Ts \<Rrightarrow> T'" by (rule subject_reduction')
-            from ared aT show "e \<turnstile> a' : T''" by (rule subject_reduction')
-            show "NF a'" by fact
-          qed
-          then obtain ua where uared: "u'[a'/0] \<rightarrow>\<^sub>\<beta>\<^sup>* ua" and uaNF: "NF ua"
-            by iprover
-          from ared have "(lift u 0 \<degree> Var 0)[a[u/i]/0] \<rightarrow>\<^sub>\<beta>\<^sup>* (lift u 0 \<degree> Var 0)[a'/0]"
-            by (rule subst_preserves_beta2')
-          also from ured have "(lift u 0 \<degree> Var 0)[a'/0] \<rightarrow>\<^sub>\<beta>\<^sup>* u'[a'/0]"
-            by (rule subst_preserves_beta')
-          also note uared
-          finally have "(lift u 0 \<degree> Var 0)[a[u/i]/0] \<rightarrow>\<^sub>\<beta>\<^sup>* ua" .
-          hence uared': "u \<degree> a[u/i] \<rightarrow>\<^sub>\<beta>\<^sup>* ua" by simp
-          from T asNF _ uaNF have "\<exists>r. (Var 0 \<degree>\<degree> map (\<lambda>t. lift t 0) as')[ua/0] \<rightarrow>\<^sub>\<beta>\<^sup>* r \<and> NF r"
-          proof (rule MI2)
-            have "e\<langle>0:Ts \<Rrightarrow> T'\<rangle> \<turnstile> Var 0 \<degree>\<degree> map (\<lambda>t. lift (t[u/i]) 0) as : T'"
-            proof (rule list_app_typeI)
-              show "e\<langle>0:Ts \<Rrightarrow> T'\<rangle> \<turnstile> Var 0 : Ts \<Rrightarrow> T'" by (rule typing.Var) simp
-              from uT argsT' have "e \<tturnstile> map (\<lambda>t. t[u/i]) as : Ts"
-                by (rule substs_lemma)
-              hence "e\<langle>0:Ts \<Rrightarrow> T'\<rangle> \<tturnstile> map (\<lambda>t. lift t 0) (map (\<lambda>t. t[u/i]) as) : Ts"
-                by (rule lift_types)
-              thus "e\<langle>0:Ts \<Rrightarrow> T'\<rangle> \<tturnstile> map (\<lambda>t. lift (t[u/i]) 0) as : Ts"
-                by (simp_all add: o_def)
-            qed
-            with asred show "e\<langle>0:Ts \<Rrightarrow> T'\<rangle> \<turnstile> Var 0 \<degree>\<degree> map (\<lambda>t. lift t 0) as' : T'"
-              by (rule subject_reduction')
-            from argT uT refl have "e \<turnstile> a[u/i] : T''" by (rule subst_lemma)
-            with uT' have "e \<turnstile> u \<degree> a[u/i] : Ts \<Rrightarrow> T'" by (rule typing.App)
-            with uared' show "e \<turnstile> ua : Ts \<Rrightarrow> T'" by (rule subject_reduction')
-          qed
-          then obtain r where rred: "(Var 0 \<degree>\<degree> map (\<lambda>t. lift t 0) as')[ua/0] \<rightarrow>\<^sub>\<beta>\<^sup>* r"
-            and rnf: "NF r" by iprover
-          from asred have
-            "(Var 0 \<degree>\<degree> map (\<lambda>t. lift (t[u/i]) 0) as)[u \<degree> a[u/i]/0] \<rightarrow>\<^sub>\<beta>\<^sup>*
-            (Var 0 \<degree>\<degree> map (\<lambda>t. lift t 0) as')[u \<degree> a[u/i]/0]"
-            by (rule subst_preserves_beta')
-          also from uared' have "(Var 0 \<degree>\<degree> map (\<lambda>t. lift t 0) as')[u \<degree> a[u/i]/0] \<rightarrow>\<^sub>\<beta>\<^sup>*
-            (Var 0 \<degree>\<degree> map (\<lambda>t. lift t 0) as')[ua/0]" by (rule subst_preserves_beta2')
-          also note rred
-          finally have "(Var 0 \<degree>\<degree> map (\<lambda>t. lift (t[u/i]) 0) as)[u \<degree> a[u/i]/0] \<rightarrow>\<^sub>\<beta>\<^sup>* r" .
-          with rnf Cons eq show ?thesis
-            by (simp add: o_def) iprover
-        qed
-      next
-        assume neq: "x \<noteq> i"
-        from App have "listall ?R ts" by (iprover dest: listall_conj2)
-        with TrueI TrueI uNF uT argsT
-        have "\<exists>ts'. \<forall>j. Var j \<degree>\<degree> map (\<lambda>t. t[u/i]) ts \<rightarrow>\<^sub>\<beta>\<^sup>* Var j \<degree>\<degree> ts' \<and>
-          NF (Var j \<degree>\<degree> ts')" (is "\<exists>ts'. ?ex ts'")
-          by (rule norm_list [of "\<lambda>t. t", simplified])
-        then obtain ts' where NF: "?ex ts'" ..
-        from nat_le_dec show ?thesis
-        proof
-          assume "i < x"
-          with NF show ?thesis by simp iprover
-        next
-          assume "\<not> (i < x)"
-          with NF neq show ?thesis by (simp add: subst_Var) iprover
-        qed
-      qed
-    next
-      case (Abs r e_ T'_ u_ i_)
-      assume absT: "e\<langle>i:T\<rangle> \<turnstile> Abs r : T'"
-      then obtain R S where "e\<langle>0:R\<rangle>\<langle>Suc i:T\<rangle>  \<turnstile> r : S" by (rule abs_typeE) simp
-      moreover have "NF (lift u 0)" using `NF u` by (rule lift_NF)
-      moreover have "e\<langle>0:R\<rangle> \<turnstile> lift u 0 : T" using uT by (rule lift_type)
-      ultimately have "\<exists>t'. r[lift u 0/Suc i] \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<and> NF t'" by (rule Abs)
-      thus "\<exists>t'. Abs r[u/i] \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<and> NF t'"
-        by simp (iprover intro: rtrancl_beta_Abs NF.Abs)
-    }
-  qed
-qed
-
-
--- {* A computationally relevant copy of @{term "e \<turnstile> t : T"} *}
-inductive rtyping :: "(nat \<Rightarrow> type) \<Rightarrow> dB \<Rightarrow> type \<Rightarrow> bool"  ("_ \<turnstile>\<^sub>R _ : _" [50, 50, 50] 50)
-  where
-    Var: "e x = T \<Longrightarrow> e \<turnstile>\<^sub>R Var x : T"
-  | Abs: "e\<langle>0:T\<rangle> \<turnstile>\<^sub>R t : U \<Longrightarrow> e \<turnstile>\<^sub>R Abs t : (T \<Rightarrow> U)"
-  | App: "e \<turnstile>\<^sub>R s : T \<Rightarrow> U \<Longrightarrow> e \<turnstile>\<^sub>R t : T \<Longrightarrow> e \<turnstile>\<^sub>R (s \<degree> t) : U"
-
-lemma rtyping_imp_typing: "e \<turnstile>\<^sub>R t : T \<Longrightarrow> e \<turnstile> t : T"
-  apply (induct set: rtyping)
-  apply (erule typing.Var)
-  apply (erule typing.Abs)
-  apply (erule typing.App)
-  apply assumption
-  done
-
-
-theorem type_NF:
-  assumes "e \<turnstile>\<^sub>R t : T"
-  shows "\<exists>t'. t \<rightarrow>\<^sub>\<beta>\<^sup>* t' \<and> NF t'" using assms
-proof induct
-  case Var
-  show ?case by (iprover intro: Var_NF)
-next
-  case Abs
-  thus ?case by (iprover intro: rtrancl_beta_Abs NF.Abs)
-next
-  case (App e s T U t)
-  from App obtain s' t' where
-    sred: "s \<rightarrow>\<^sub>\<beta>\<^sup>* s'" and "NF s'"
-    and tred: "t \<rightarrow>\<^sub>\<beta>\<^sup>* t'" and tNF: "NF t'" by iprover
-  have "\<exists>u. (Var 0 \<degree> lift t' 0)[s'/0] \<rightarrow>\<^sub>\<beta>\<^sup>* u \<and> NF u"
-  proof (rule subst_type_NF)
-    have "NF (lift t' 0)" using tNF by (rule lift_NF)
-    hence "listall NF [lift t' 0]" by (rule listall_cons) (rule listall_nil)
-    hence "NF (Var 0 \<degree>\<degree> [lift t' 0])" by (rule NF.App)
-    thus "NF (Var 0 \<degree> lift t' 0)" by simp
-    show "e\<langle>0:T \<Rightarrow> U\<rangle> \<turnstile> Var 0 \<degree> lift t' 0 : U"
-    proof (rule typing.App)
-      show "e\<langle>0:T \<Rightarrow> U\<rangle> \<turnstile> Var 0 : T \<Rightarrow> U"
-        by (rule typing.Var) simp
-      from tred have "e \<turnstile> t' : T"
-        by (rule subject_reduction') (rule rtyping_imp_typing, rule App.hyps)
-      thus "e\<langle>0:T \<Rightarrow> U\<rangle> \<turnstile> lift t' 0 : T"
-        by (rule lift_type)
-    qed
-    from sred show "e \<turnstile> s' : T \<Rightarrow> U"
-      by (rule subject_reduction') (rule rtyping_imp_typing, rule App.hyps)
-    show "NF s'" by fact
-  qed
-  then obtain u where ured: "s' \<degree> t' \<rightarrow>\<^sub>\<beta>\<^sup>* u" and unf: "NF u" by simp iprover
-  from sred tred have "s \<degree> t \<rightarrow>\<^sub>\<beta>\<^sup>* s' \<degree> t'" by (rule rtrancl_beta_App)
-  hence "s \<degree> t \<rightarrow>\<^sub>\<beta>\<^sup>* u" using ured by (rule rtranclp_trans)
-  with unf show ?case by iprover
-qed
-
-
-subsection {* Extracting the program *}
-
-declare NF.induct [ind_realizer]
-declare rtranclp.induct [ind_realizer irrelevant]
-declare rtyping.induct [ind_realizer]
-lemmas [extraction_expand] = conj_assoc listall_cons_eq
-
-extract type_NF
-
-lemma rtranclR_rtrancl_eq: "rtranclpR r a b = r\<^sup>*\<^sup>* a b"
-  apply (rule iffI)
-  apply (erule rtranclpR.induct)
-  apply (rule rtranclp.rtrancl_refl)
-  apply (erule rtranclp.rtrancl_into_rtrancl)
-  apply assumption
-  apply (erule rtranclp.induct)
-  apply (rule rtranclpR.rtrancl_refl)
-  apply (erule rtranclpR.rtrancl_into_rtrancl)
-  apply assumption
-  done
-
-lemma NFR_imp_NF: "NFR nf t \<Longrightarrow> NF t"
-  apply (erule NFR.induct)
-  apply (rule NF.intros)
-  apply (simp add: listall_def)
-  apply (erule NF.intros)
-  done
-
-text_raw {*
-\begin{figure}
-\renewcommand{\isastyle}{\scriptsize\it}%
-@{thm [display,eta_contract=false,margin=100] subst_type_NF_def}
-\renewcommand{\isastyle}{\small\it}%
-\caption{Program extracted from @{text subst_type_NF}}
-\label{fig:extr-subst-type-nf}
-\end{figure}
-
-\begin{figure}
-\renewcommand{\isastyle}{\scriptsize\it}%
-@{thm [display,margin=100] subst_Var_NF_def}
-@{thm [display,margin=100] app_Var_NF_def}
-@{thm [display,margin=100] lift_NF_def}
-@{thm [display,eta_contract=false,margin=100] type_NF_def}
-\renewcommand{\isastyle}{\small\it}%
-\caption{Program extracted from lemmas and main theorem}
-\label{fig:extr-type-nf}
-\end{figure}
-*}
-
-text {*
-The program corresponding to the proof of the central lemma, which
-performs substitution and normalization, is shown in Figure
-\ref{fig:extr-subst-type-nf}. The correctness
-theorem corresponding to the program @{text "subst_type_NF"} is
-@{thm [display,margin=100] subst_type_NF_correctness
-  [simplified rtranclR_rtrancl_eq Collect_mem_eq, no_vars]}
-where @{text NFR} is the realizability predicate corresponding to
-the datatype @{text NFT}, which is inductively defined by the rules
-\pagebreak
-@{thm [display,margin=90] NFR.App [of ts nfs x] NFR.Abs [of nf t]}
-
-The programs corresponding to the main theorem @{text "type_NF"}, as
-well as to some lemmas, are shown in Figure \ref{fig:extr-type-nf}.
-The correctness statement for the main function @{text "type_NF"} is
-@{thm [display,margin=100] type_NF_correctness
-  [simplified rtranclR_rtrancl_eq Collect_mem_eq, no_vars]}
-where the realizability predicate @{text "rtypingR"} corresponding to the
-computationally relevant version of the typing judgement is inductively
-defined by the rules
-@{thm [display,margin=100] rtypingR.Var [no_vars]
-  rtypingR.Abs [of ty, no_vars] rtypingR.App [of ty e s T U ty' t]}
-*}
-
-subsection {* Generating executable code *}
-
-instantiation NFT :: default
-begin
-
-definition "default = Dummy ()"
-
-instance ..
-
-end
-
-instantiation dB :: default
-begin
-
-definition "default = dB.Var 0"
-
-instance ..
-
-end
-
-instantiation prod :: (default, default) default
-begin
-
-definition "default = (default, default)"
-
-instance ..
-
-end
-
-instantiation list :: (type) default
-begin
-
-definition "default = []"
-
-instance ..
-
-end
-
-instantiation "fun" :: (type, default) default
-begin
-
-definition "default = (\<lambda>x. default)"
-
-instance ..
-
-end
-
-definition int_of_nat :: "nat \<Rightarrow> int" where
-  "int_of_nat = of_nat"
-
-text {*
-  The following functions convert between Isabelle's built-in {\tt term}
-  datatype and the generated {\tt dB} datatype. This allows to
-  generate example terms using Isabelle's parser and inspect
-  normalized terms using Isabelle's pretty printer.
-*}
-
-ML {*
-fun dBtype_of_typ (Type ("fun", [T, U])) =
-      @{code Fun} (dBtype_of_typ T, dBtype_of_typ U)
-  | dBtype_of_typ (TFree (s, _)) = (case explode s of
-        ["'", a] => @{code Atom} (@{code nat} (ord a - 97))
-      | _ => error "dBtype_of_typ: variable name")
-  | dBtype_of_typ _ = error "dBtype_of_typ: bad type";
-
-fun dB_of_term (Bound i) = @{code dB.Var} (@{code nat} i)
-  | dB_of_term (t $ u) = @{code dB.App} (dB_of_term t, dB_of_term u)
-  | dB_of_term (Abs (_, _, t)) = @{code dB.Abs} (dB_of_term t)
-  | dB_of_term _ = error "dB_of_term: bad term";
-
-fun term_of_dB Ts (Type ("fun", [T, U])) (@{code dB.Abs} dBt) =
-      Abs ("x", T, term_of_dB (T :: Ts) U dBt)
-  | term_of_dB Ts _ dBt = term_of_dB' Ts dBt
-and term_of_dB' Ts (@{code dB.Var} n) = Bound (@{code int_of_nat} n)
-  | term_of_dB' Ts (@{code dB.App} (dBt, dBu)) =
-      let val t = term_of_dB' Ts dBt
-      in case fastype_of1 (Ts, t) of
-          Type ("fun", [T, U]) => t $ term_of_dB Ts T dBu
-        | _ => error "term_of_dB: function type expected"
-      end
-  | term_of_dB' _ _ = error "term_of_dB: term not in normal form";
-
-fun typing_of_term Ts e (Bound i) =
-      @{code Var} (e, @{code nat} i, dBtype_of_typ (nth Ts i))
-  | typing_of_term Ts e (t $ u) = (case fastype_of1 (Ts, t) of
-        Type ("fun", [T, U]) => @{code App} (e, dB_of_term t,
-          dBtype_of_typ T, dBtype_of_typ U, dB_of_term u,
-          typing_of_term Ts e t, typing_of_term Ts e u)
-      | _ => error "typing_of_term: function type expected")
-  | typing_of_term Ts e (Abs (s, T, t)) =
-      let val dBT = dBtype_of_typ T
-      in @{code Abs} (e, dBT, dB_of_term t,
-        dBtype_of_typ (fastype_of1 (T :: Ts, t)),
-        typing_of_term (T :: Ts) (@{code shift} e @{code "0::nat"} dBT) t)
-      end
-  | typing_of_term _ _ _ = error "typing_of_term: bad term";
-
-fun dummyf _ = error "dummy";
-
-val ct1 = @{cterm "%f. ((%f x. f (f (f x))) ((%f x. f (f (f (f x)))) f))"};
-val (dB1, _) = @{code type_NF} (typing_of_term [] dummyf (term_of ct1));
-val ct1' = cterm_of @{theory} (term_of_dB [] (#T (rep_cterm ct1)) dB1);
-
-val ct2 = @{cterm "%f x. (%x. f x x) ((%x. f x x) ((%x. f x x) ((%x. f x x) ((%x. f x x) ((%x. f x x) x)))))"};
-val (dB2, _) = @{code type_NF} (typing_of_term [] dummyf (term_of ct2));
-val ct2' = cterm_of @{theory} (term_of_dB [] (#T (rep_cterm ct2)) dB2);
-*}
-
-text {*
-The same story again for the SML code generator.
-*}
-
-consts_code
-  "default" ("(error \"default\")")
-  "default :: 'a \<Rightarrow> 'b::default" ("(fn '_ => error \"default\")")
-
-code_module Norm
-contains
-  test = "type_NF"
-
-ML {*
-fun nat_of_int 0 = Norm.zero
-  | nat_of_int n = Norm.Suc (nat_of_int (n-1));
-
-fun int_of_nat Norm.zero = 0
-  | int_of_nat (Norm.Suc n) = 1 + int_of_nat n;
-
-fun dBtype_of_typ (Type ("fun", [T, U])) =
-      Norm.Fun (dBtype_of_typ T, dBtype_of_typ U)
-  | dBtype_of_typ (TFree (s, _)) = (case explode s of
-        ["'", a] => Norm.Atom (nat_of_int (ord a - 97))
-      | _ => error "dBtype_of_typ: variable name")
-  | dBtype_of_typ _ = error "dBtype_of_typ: bad type";
-
-fun dB_of_term (Bound i) = Norm.dB_Var (nat_of_int i)
-  | dB_of_term (t $ u) = Norm.App (dB_of_term t, dB_of_term u)
-  | dB_of_term (Abs (_, _, t)) = Norm.Abs (dB_of_term t)
-  | dB_of_term _ = error "dB_of_term: bad term";
-
-fun term_of_dB Ts (Type ("fun", [T, U])) (Norm.Abs dBt) =
-      Abs ("x", T, term_of_dB (T :: Ts) U dBt)
-  | term_of_dB Ts _ dBt = term_of_dB' Ts dBt
-and term_of_dB' Ts (Norm.dB_Var n) = Bound (int_of_nat n)
-  | term_of_dB' Ts (Norm.App (dBt, dBu)) =
-      let val t = term_of_dB' Ts dBt
-      in case fastype_of1 (Ts, t) of
-          Type ("fun", [T, U]) => t $ term_of_dB Ts T dBu
-        | _ => error "term_of_dB: function type expected"
-      end
-  | term_of_dB' _ _ = error "term_of_dB: term not in normal form";
-
-fun typing_of_term Ts e (Bound i) =
-      Norm.Var (e, nat_of_int i, dBtype_of_typ (List.nth (Ts, i)))
-  | typing_of_term Ts e (t $ u) = (case fastype_of1 (Ts, t) of
-        Type ("fun", [T, U]) => Norm.rtypingT_App (e, dB_of_term t,
-          dBtype_of_typ T, dBtype_of_typ U, dB_of_term u,
-          typing_of_term Ts e t, typing_of_term Ts e u)
-      | _ => error "typing_of_term: function type expected")
-  | typing_of_term Ts e (Abs (s, T, t)) =
-      let val dBT = dBtype_of_typ T
-      in Norm.rtypingT_Abs (e, dBT, dB_of_term t,
-        dBtype_of_typ (fastype_of1 (T :: Ts, t)),
-        typing_of_term (T :: Ts) (Norm.shift e Norm.zero dBT) t)
-      end
-  | typing_of_term _ _ _ = error "typing_of_term: bad term";
-
-fun dummyf _ = error "dummy";
-*}
-
-text {*
-We now try out the extracted program @{text "type_NF"} on some example terms.
-*}
-
-ML {*
-val ct1 = @{cterm "%f. ((%f x. f (f (f x))) ((%f x. f (f (f (f x)))) f))"};
-val (dB1, _) = Norm.type_NF (typing_of_term [] dummyf (term_of ct1));
-val ct1' = cterm_of @{theory} (term_of_dB [] (#T (rep_cterm ct1)) dB1);
-
-val ct2 = @{cterm "%f x. (%x. f x x) ((%x. f x x) ((%x. f x x) ((%x. f x x) ((%x. f x x) ((%x. f x x) x)))))"};
-val (dB2, _) = Norm.type_NF (typing_of_term [] dummyf (term_of ct2));
-val ct2' = cterm_of @{theory} (term_of_dB [] (#T (rep_cterm ct2)) dB2);
-*}
-
-end