src/HOL/Real/HahnBanach/Aux.thy
changeset 9035 371f023d3dbd
parent 9013 9dd0274f76af
child 9043 ca761fe227d8
--- a/src/HOL/Real/HahnBanach/Aux.thy	Sun Jun 04 00:09:04 2000 +0200
+++ b/src/HOL/Real/HahnBanach/Aux.thy	Sun Jun 04 19:39:29 2000 +0200
@@ -3,161 +3,161 @@
     Author:     Gertrud Bauer, TU Munich
 *)
 
-header {* Auxiliary theorems *};
+header {* Auxiliary theorems *}
 
-theory Aux = Real + Zorn:;
+theory Aux = Real + Zorn:
 
 text {* Some existing theorems are declared as extra introduction
-or elimination rules, respectively. *};
+or elimination rules, respectively. *}
 
-lemmas [intro??] = isLub_isUb;
-lemmas [intro??] = chainD; 
-lemmas chainE2 = chainD2 [elimify];
+lemmas [intro??] = isLub_isUb
+lemmas [intro??] = chainD 
+lemmas chainE2 = chainD2 [elimify]
 
-text_raw {* \medskip *};
-text{* Lemmas about sets. *};
+text_raw {* \medskip *}
+text{* Lemmas about sets. *}
 
-lemma Int_singletonD: "[| A Int B = {v}; x:A; x:B |] ==> x = v";
-  by (fast elim: equalityE);
+lemma Int_singletonD: "[| A Int B = {v}; x:A; x:B |] ==> x = v"
+  by (fast elim: equalityE)
 
-lemma set_less_imp_diff_not_empty: "H < E ==> EX x0:E. x0 ~: H";
- by (force simp add: psubset_eq);
+lemma set_less_imp_diff_not_empty: "H < E ==> EX x0:E. x0 ~: H"
+ by (force simp add: psubset_eq)
 
-text_raw {* \medskip *};
-text{* Some lemmas about orders. *};
+text_raw {* \medskip *}
+text{* Some lemmas about orders. *}
 
-lemma lt_imp_not_eq: "x < (y::'a::order) ==> x ~= y"; 
-  by (rule order_less_le[RS iffD1, RS conjunct2]);
+lemma lt_imp_not_eq: "x < (y::'a::order) ==> x ~= y" 
+  by (rule order_less_le[RS iffD1, RS conjunct2])
 
 lemma le_noteq_imp_less: 
-  "[| x <= (r::'a::order); x ~= r |] ==> x < r";
-proof -;
-  assume "x <= (r::'a::order)" and ne:"x ~= r";
-  hence "x < r | x = r"; by (simp add: order_le_less);
-  with ne; show ?thesis; by simp;
-qed;
+  "[| x <= (r::'a::order); x ~= r |] ==> x < r"
+proof -
+  assume "x <= (r::'a::order)" and ne:"x ~= r"
+  hence "x < r | x = r" by (simp add: order_le_less)
+  with ne show ?thesis by simp
+qed
 
-text_raw {* \medskip *};
-text {* Some lemmas about linear orders. *};
+text_raw {* \medskip *}
+text {* Some lemmas about linear orders. *}
 
 theorem linorder_linear_split: 
-"[| x < a ==> Q; x = a ==> Q; a < (x::'a::linorder) ==> Q |] ==> Q";
-  by (rule linorder_less_linear [of x a, elimify]) force+;
+"[| x < a ==> Q; x = a ==> Q; a < (x::'a::linorder) ==> Q |] ==> Q"
+  by (rule linorder_less_linear [of x a, elimify]) force+
 
-lemma le_max1: "x <= max x (y::'a::linorder)";
-  by (simp add: le_max_iff_disj[of x x y]);
+lemma le_max1: "x <= max x (y::'a::linorder)"
+  by (simp add: le_max_iff_disj[of x x y])
 
-lemma le_max2: "y <= max x (y::'a::linorder)"; 
-  by (simp add: le_max_iff_disj[of y x y]);
+lemma le_max2: "y <= max x (y::'a::linorder)" 
+  by (simp add: le_max_iff_disj[of y x y])
 
-text_raw {* \medskip *};
-text{* Some lemmas for the reals. *};
+text_raw {* \medskip *}
+text{* Some lemmas for the reals. *}
 
-lemma real_add_minus_eq: "x - y = (#0::real) ==> x = y";
-  by simp;
+lemma real_add_minus_eq: "x - y = (#0::real) ==> x = y"
+  by simp
 
-lemma abs_minus_one: "abs (- (#1::real)) = #1"; 
-  by simp;
+lemma abs_minus_one: "abs (- (#1::real)) = #1" 
+  by simp
 
 
 lemma real_mult_le_le_mono1a: 
-  "[| (#0::real) <= z; x <= y |] ==> z * x  <= z * y";
-proof -;
-  assume "(#0::real) <= z" "x <= y";
-  hence "x < y | x = y"; by (force simp add: order_le_less);
-  thus ?thesis;
-  proof (elim disjE); 
-   assume "x < y"; show ?thesis; by (rule real_mult_le_less_mono2) simp;
-  next; 
-   assume "x = y"; thus ?thesis;; by simp;
-  qed;
-qed;
+  "[| (#0::real) <= z; x <= y |] ==> z * x  <= z * y"
+proof -
+  assume "(#0::real) <= z" "x <= y"
+  hence "x < y | x = y" by (force simp add: order_le_less)
+  thus ?thesis
+  proof (elim disjE) 
+   assume "x < y" show ?thesis by (rule real_mult_le_less_mono2) simp
+  next 
+   assume "x = y" thus ?thesis by simp
+  qed
+qed
 
 lemma real_mult_le_le_mono2: 
-  "[| (#0::real) <= z; x <= y |] ==> x * z <= y * z";
-proof -;
-  assume "(#0::real) <= z" "x <= y";
-  hence "x < y | x = y"; by (force simp add: order_le_less);
-  thus ?thesis;
-  proof (elim disjE); 
-   assume "x < y"; show ?thesis; by (rule real_mult_le_less_mono1) simp;
-  next; 
-   assume "x = y"; thus ?thesis;; by simp;
-  qed;
-qed;
+  "[| (#0::real) <= z; x <= y |] ==> x * z <= y * z"
+proof -
+  assume "(#0::real) <= z" "x <= y"
+  hence "x < y | x = y" by (force simp add: order_le_less)
+  thus ?thesis
+  proof (elim disjE) 
+   assume "x < y" show ?thesis by (rule real_mult_le_less_mono1) simp
+  next 
+   assume "x = y" thus ?thesis by simp
+  qed
+qed
 
 lemma real_mult_less_le_anti: 
-  "[| z < (#0::real); x <= y |] ==> z * y <= z * x";
-proof -;
-  assume "z < (#0::real)" "x <= y";
-  hence "(#0::real) < - z"; by simp;
-  hence "(#0::real) <= - z"; by (rule real_less_imp_le);
-  hence "x * (- z) <= y * (- z)"; 
-    by (rule real_mult_le_le_mono2);
-  hence  "- (x * z) <= - (y * z)"; 
-    by (simp only: real_minus_mult_eq2);
-  thus ?thesis; by (simp only: real_mult_commute);
-qed;
+  "[| z < (#0::real); x <= y |] ==> z * y <= z * x"
+proof -
+  assume "z < #0" "x <= y"
+  hence "#0 < - z" by simp
+  hence "#0 <= - z" by (rule real_less_imp_le)
+  hence "x * (- z) <= y * (- z)" 
+    by (rule real_mult_le_le_mono2)
+  hence  "- (x * z) <= - (y * z)" 
+    by (simp only: real_minus_mult_eq2)
+  thus ?thesis by (simp only: real_mult_commute)
+qed
 
 lemma real_mult_less_le_mono: 
-  "[| (#0::real) < z; x <= y |] ==> z * x <= z * y";
-proof -; 
-  assume "(#0::real) < z" "x <= y";
-  have "(#0::real) <= z"; by (rule real_less_imp_le);
-  hence "x * z <= y * z"; 
-    by (rule real_mult_le_le_mono2);
-  thus ?thesis; by (simp only: real_mult_commute);
-qed;
+  "[| (#0::real) < z; x <= y |] ==> z * x <= z * y"
+proof - 
+  assume "#0 < z" "x <= y"
+  have "#0 <= z" by (rule real_less_imp_le)
+  hence "x * z <= y * z" 
+    by (rule real_mult_le_le_mono2)
+  thus ?thesis by (simp only: real_mult_commute)
+qed
 
-lemma real_rinv_gt_zero1: "#0 < x ==> #0 < rinv x";
-proof -; 
-  assume "#0 < x";
-  have "0r < x"; by simp;
-  hence "0r < rinv x"; by (rule real_rinv_gt_zero);
-  thus ?thesis; by simp;
-qed;
+lemma real_rinv_gt_zero1: "#0 < x ==> #0 < rinv x"
+proof - 
+  assume "#0 < x"
+  hence "0r < x" by simp
+  hence "0r < rinv x" by (rule real_rinv_gt_zero)
+  thus ?thesis by simp
+qed
 
-lemma real_mult_inv_right1: "x ~= #0 ==> x*rinv(x) = #1";
-   by simp;
+lemma real_mult_inv_right1: "x ~= #0 ==> x*rinv(x) = #1"
+   by simp
 
-lemma real_mult_inv_left1: "x ~= #0 ==> rinv(x)*x = #1";
-   by simp;
+lemma real_mult_inv_left1: "x ~= #0 ==> rinv(x)*x = #1"
+   by simp
 
 lemma real_le_mult_order1a: 
-      "[| (#0::real) <= x; #0 <= y |] ==> #0 <= x * y";
-proof -;
-  assume "#0 <= x" "#0 <= y";
-    have "[|0r <= x; 0r <= y|] ==> 0r <= x * y";  
-      by (rule real_le_mult_order);
-    thus ?thesis; by (simp!);
-qed;
+      "[| (#0::real) <= x; #0 <= y |] ==> #0 <= x * y"
+proof -
+  assume "#0 <= x" "#0 <= y"
+    have "[|0r <= x; 0r <= y|] ==> 0r <= x * y"  
+      by (rule real_le_mult_order)
+    thus ?thesis by (simp!)
+qed
 
 lemma real_mult_diff_distrib: 
-  "a * (- x - (y::real)) = - a * x - a * y";
-proof -;
-  have "- x - y = - x + - y"; by simp;
-  also; have "a * ... = a * - x + a * - y"; 
-    by (simp only: real_add_mult_distrib2);
-  also; have "... = - a * x - a * y"; 
-    by (simp add: real_minus_mult_eq2 [RS sym] real_minus_mult_eq1);
-  finally; show ?thesis; .;
-qed;
+  "a * (- x - (y::real)) = - a * x - a * y"
+proof -
+  have "- x - y = - x + - y" by simp
+  also have "a * ... = a * - x + a * - y" 
+    by (simp only: real_add_mult_distrib2)
+  also have "... = - a * x - a * y" 
+    by (simp add: real_minus_mult_eq2 [RS sym] real_minus_mult_eq1)
+  finally show ?thesis .
+qed
 
-lemma real_mult_diff_distrib2: "a * (x - (y::real)) = a * x - a * y";
-proof -; 
-  have "x - y = x + - y"; by simp;
-  also; have "a * ... = a * x + a * - y"; 
-    by (simp only: real_add_mult_distrib2);
-  also; have "... = a * x - a * y";   
-    by (simp add: real_minus_mult_eq2 [RS sym] real_minus_mult_eq1);
-  finally; show ?thesis; .;
-qed;
+lemma real_mult_diff_distrib2: "a * (x - (y::real)) = a * x - a * y"
+proof - 
+  have "x - y = x + - y" by simp
+  also have "a * ... = a * x + a * - y" 
+    by (simp only: real_add_mult_distrib2)
+  also have "... = a * x - a * y"   
+    by (simp add: real_minus_mult_eq2 [RS sym] real_minus_mult_eq1)
+  finally show ?thesis .
+qed
 
-lemma real_minus_le: "- (x::real) <= y ==> - y <= x";
-  by simp;
+lemma real_minus_le: "- (x::real) <= y ==> - y <= x"
+  by simp
 
 lemma real_diff_ineq_swap: 
-  "(d::real) - b <= c + a ==> - a - b <= c - d";
-  by simp;
+  "(d::real) - b <= c + a ==> - a - b <= c - d"
+  by simp
 
-end;
\ No newline at end of file
+end
\ No newline at end of file