src/HOL/Real/HahnBanach/Subspace.thy
changeset 9035 371f023d3dbd
parent 9013 9dd0274f76af
child 9370 cccba6147dae
--- a/src/HOL/Real/HahnBanach/Subspace.thy	Sun Jun 04 00:09:04 2000 +0200
+++ b/src/HOL/Real/HahnBanach/Subspace.thy	Sun Jun 04 19:39:29 2000 +0200
@@ -4,218 +4,218 @@
 *)
 
 
-header {* Subspaces *};
+header {* Subspaces *}
 
-theory Subspace = VectorSpace:;
+theory Subspace = VectorSpace:
 
 
-subsection {* Definition *};
+subsection {* Definition *}
 
 text {* A non-empty subset $U$ of a vector space $V$ is a 
 \emph{subspace} of $V$, iff $U$ is closed under addition and 
-scalar multiplication. *};
+scalar multiplication. *}
 
 constdefs 
   is_subspace ::  "['a::{minus, plus} set, 'a set] => bool"
   "is_subspace U V == U ~= {} & U <= V 
-     & (ALL x:U. ALL y:U. ALL a. x + y : U & a (*) x : U)";
+     & (ALL x:U. ALL y:U. ALL a. x + y : U & a (*) x : U)"
 
 lemma subspaceI [intro]: 
   "[| 00 : U; U <= V; ALL x:U. ALL y:U. (x + y : U); 
   ALL x:U. ALL a. a (*) x : U |]
-  ==> is_subspace U V";
-proof (unfold is_subspace_def, intro conjI); 
-  assume "00 : U"; thus "U ~= {}"; by fast;
-qed (simp+);
+  ==> is_subspace U V"
+proof (unfold is_subspace_def, intro conjI) 
+  assume "00 : U" thus "U ~= {}" by fast
+qed (simp+)
 
-lemma subspace_not_empty [intro??]: "is_subspace U V ==> U ~= {}";
-  by (unfold is_subspace_def) simp; 
+lemma subspace_not_empty [intro??]: "is_subspace U V ==> U ~= {}"
+  by (unfold is_subspace_def) simp 
 
-lemma subspace_subset [intro??]: "is_subspace U V ==> U <= V";
-  by (unfold is_subspace_def) simp;
+lemma subspace_subset [intro??]: "is_subspace U V ==> U <= V"
+  by (unfold is_subspace_def) simp
 
 lemma subspace_subsetD [simp, intro??]: 
-  "[| is_subspace U V; x:U |] ==> x:V";
-  by (unfold is_subspace_def) force;
+  "[| is_subspace U V; x:U |] ==> x:V"
+  by (unfold is_subspace_def) force
 
 lemma subspace_add_closed [simp, intro??]: 
-  "[| is_subspace U V; x:U; y:U |] ==> x + y : U";
-  by (unfold is_subspace_def) simp;
+  "[| is_subspace U V; x:U; y:U |] ==> x + y : U"
+  by (unfold is_subspace_def) simp
 
 lemma subspace_mult_closed [simp, intro??]: 
-  "[| is_subspace U V; x:U |] ==> a (*) x : U";
-  by (unfold is_subspace_def) simp;
+  "[| is_subspace U V; x:U |] ==> a (*) x : U"
+  by (unfold is_subspace_def) simp
 
 lemma subspace_diff_closed [simp, intro??]: 
   "[| is_subspace U V; is_vectorspace V; x:U; y:U |] 
-  ==> x - y : U";
-  by (simp! add: diff_eq1 negate_eq1);
+  ==> x - y : U"
+  by (simp! add: diff_eq1 negate_eq1)
 
 text {* Similar as for linear spaces, the existence of the 
 zero element in every subspace follows from the non-emptiness 
-of the carrier set and by vector space laws.*};
+of the carrier set and by vector space laws.*}
 
 lemma zero_in_subspace [intro??]:
-  "[| is_subspace U V; is_vectorspace V |] ==> 00 : U";
-proof -; 
-  assume "is_subspace U V" and v: "is_vectorspace V";
-  have "U ~= {}"; ..;
-  hence "EX x. x:U"; by force;
-  thus ?thesis; 
-  proof; 
-    fix x; assume u: "x:U"; 
-    hence "x:V"; by (simp!);
-    with v; have "00 = x - x"; by (simp!);
-    also; have "... : U"; by (rule subspace_diff_closed);
-    finally; show ?thesis; .;
-  qed;
-qed;
+  "[| is_subspace U V; is_vectorspace V |] ==> 00 : U"
+proof - 
+  assume "is_subspace U V" and v: "is_vectorspace V"
+  have "U ~= {}" ..
+  hence "EX x. x:U" by force
+  thus ?thesis 
+  proof 
+    fix x assume u: "x:U" 
+    hence "x:V" by (simp!)
+    with v have "00 = x - x" by (simp!)
+    also have "... : U" by (rule subspace_diff_closed)
+    finally show ?thesis .
+  qed
+qed
 
 lemma subspace_neg_closed [simp, intro??]: 
-  "[| is_subspace U V; is_vectorspace V; x:U |] ==> - x : U";
-  by (simp add: negate_eq1);
+  "[| is_subspace U V; is_vectorspace V; x:U |] ==> - x : U"
+  by (simp add: negate_eq1)
 
-text_raw {* \medskip *};
-text {* Further derived laws: every subspace is a vector space. *};
+text_raw {* \medskip *}
+text {* Further derived laws: every subspace is a vector space. *}
 
 lemma subspace_vs [intro??]:
-  "[| is_subspace U V; is_vectorspace V |] ==> is_vectorspace U";
-proof -;
-  assume "is_subspace U V" "is_vectorspace V";
-  show ?thesis;
-  proof; 
-    show "00 : U"; ..;
-    show "ALL x:U. ALL a. a (*) x : U"; by (simp!);
-    show "ALL x:U. ALL y:U. x + y : U"; by (simp!);
-    show "ALL x:U. - x = -#1 (*) x"; by (simp! add: negate_eq1);
-    show "ALL x:U. ALL y:U. x - y =  x + - y"; 
-      by (simp! add: diff_eq1);
-  qed (simp! add: vs_add_mult_distrib1 vs_add_mult_distrib2)+;
-qed;
+  "[| is_subspace U V; is_vectorspace V |] ==> is_vectorspace U"
+proof -
+  assume "is_subspace U V" "is_vectorspace V"
+  show ?thesis
+  proof 
+    show "00 : U" ..
+    show "ALL x:U. ALL a. a (*) x : U" by (simp!)
+    show "ALL x:U. ALL y:U. x + y : U" by (simp!)
+    show "ALL x:U. - x = -#1 (*) x" by (simp! add: negate_eq1)
+    show "ALL x:U. ALL y:U. x - y =  x + - y" 
+      by (simp! add: diff_eq1)
+  qed (simp! add: vs_add_mult_distrib1 vs_add_mult_distrib2)+
+qed
 
-text {* The subspace relation is reflexive. *};
+text {* The subspace relation is reflexive. *}
 
-lemma subspace_refl [intro]: "is_vectorspace V ==> is_subspace V V";
-proof; 
-  assume "is_vectorspace V";
-  show "00 : V"; ..;
-  show "V <= V"; ..;
-  show "ALL x:V. ALL y:V. x + y : V"; by (simp!);
-  show "ALL x:V. ALL a. a (*) x : V"; by (simp!);
-qed;
+lemma subspace_refl [intro]: "is_vectorspace V ==> is_subspace V V"
+proof 
+  assume "is_vectorspace V"
+  show "00 : V" ..
+  show "V <= V" ..
+  show "ALL x:V. ALL y:V. x + y : V" by (simp!)
+  show "ALL x:V. ALL a. a (*) x : V" by (simp!)
+qed
 
-text {* The subspace relation is transitive. *};
+text {* The subspace relation is transitive. *}
 
 lemma subspace_trans: 
   "[| is_subspace U V; is_vectorspace V; is_subspace V W |] 
-  ==> is_subspace U W";
-proof; 
-  assume "is_subspace U V" "is_subspace V W" "is_vectorspace V";
-  show "00 : U"; ..;
+  ==> is_subspace U W"
+proof 
+  assume "is_subspace U V" "is_subspace V W" "is_vectorspace V"
+  show "00 : U" ..
 
-  have "U <= V"; ..;
-  also; have "V <= W"; ..;
-  finally; show "U <= W"; .;
+  have "U <= V" ..
+  also have "V <= W" ..
+  finally show "U <= W" .
 
-  show "ALL x:U. ALL y:U. x + y : U"; 
-  proof (intro ballI);
-    fix x y; assume "x:U" "y:U";
-    show "x + y : U"; by (simp!);
-  qed;
+  show "ALL x:U. ALL y:U. x + y : U" 
+  proof (intro ballI)
+    fix x y assume "x:U" "y:U"
+    show "x + y : U" by (simp!)
+  qed
 
-  show "ALL x:U. ALL a. a (*) x : U";
-  proof (intro ballI allI);
-    fix x a; assume "x:U";
-    show "a (*) x : U"; by (simp!);
-  qed;
-qed;
+  show "ALL x:U. ALL a. a (*) x : U"
+  proof (intro ballI allI)
+    fix x a assume "x:U"
+    show "a (*) x : U" by (simp!)
+  qed
+qed
 
 
 
-subsection {* Linear closure *};
+subsection {* Linear closure *}
 
 text {* The \emph{linear closure} of a vector $x$ is the set of all
-scalar multiples of $x$. *};
+scalar multiples of $x$. *}
 
 constdefs
   lin :: "'a => 'a set"
-  "lin x == {a (*) x | a. True}"; 
+  "lin x == {a (*) x | a. True}" 
 
-lemma linD: "x : lin v = (EX a::real. x = a (*) v)";
-  by (unfold lin_def) fast;
+lemma linD: "x : lin v = (EX a::real. x = a (*) v)"
+  by (unfold lin_def) fast
 
-lemma linI [intro??]: "a (*) x0 : lin x0";
-  by (unfold lin_def) fast;
+lemma linI [intro??]: "a (*) x0 : lin x0"
+  by (unfold lin_def) fast
 
-text {* Every vector is contained in its linear closure. *};
+text {* Every vector is contained in its linear closure. *}
 
-lemma x_lin_x: "[| is_vectorspace V; x:V |] ==> x : lin x";
-proof (unfold lin_def, intro CollectI exI conjI);
-  assume "is_vectorspace V" "x:V";
-  show "x = #1 (*) x"; by (simp!);
-qed simp;
+lemma x_lin_x: "[| is_vectorspace V; x:V |] ==> x : lin x"
+proof (unfold lin_def, intro CollectI exI conjI)
+  assume "is_vectorspace V" "x:V"
+  show "x = #1 (*) x" by (simp!)
+qed simp
 
-text {* Any linear closure is a subspace. *};
+text {* Any linear closure is a subspace. *}
 
 lemma lin_subspace [intro??]: 
-  "[| is_vectorspace V; x:V |] ==> is_subspace (lin x) V";
-proof;
-  assume "is_vectorspace V" "x:V";
-  show "00 : lin x"; 
-  proof (unfold lin_def, intro CollectI exI conjI);
-    show "00 = (#0::real) (*) x"; by (simp!);
-  qed simp;
+  "[| is_vectorspace V; x:V |] ==> is_subspace (lin x) V"
+proof
+  assume "is_vectorspace V" "x:V"
+  show "00 : lin x" 
+  proof (unfold lin_def, intro CollectI exI conjI)
+    show "00 = (#0::real) (*) x" by (simp!)
+  qed simp
 
-  show "lin x <= V";
-  proof (unfold lin_def, intro subsetI, elim CollectE exE conjE); 
-    fix xa a; assume "xa = a (*) x"; 
-    show "xa:V"; by (simp!);
-  qed;
+  show "lin x <= V"
+  proof (unfold lin_def, intro subsetI, elim CollectE exE conjE) 
+    fix xa a assume "xa = a (*) x" 
+    show "xa:V" by (simp!)
+  qed
 
-  show "ALL x1 : lin x. ALL x2 : lin x. x1 + x2 : lin x"; 
-  proof (intro ballI);
-    fix x1 x2; assume "x1 : lin x" "x2 : lin x"; 
-    thus "x1 + x2 : lin x";
+  show "ALL x1 : lin x. ALL x2 : lin x. x1 + x2 : lin x" 
+  proof (intro ballI)
+    fix x1 x2 assume "x1 : lin x" "x2 : lin x" 
+    thus "x1 + x2 : lin x"
     proof (unfold lin_def, elim CollectE exE conjE, 
-      intro CollectI exI conjI);
-      fix a1 a2; assume "x1 = a1 (*) x" "x2 = a2 (*) x";
-      show "x1 + x2 = (a1 + a2) (*) x"; 
-        by (simp! add: vs_add_mult_distrib2);
-    qed simp;
-  qed;
+      intro CollectI exI conjI)
+      fix a1 a2 assume "x1 = a1 (*) x" "x2 = a2 (*) x"
+      show "x1 + x2 = (a1 + a2) (*) x" 
+        by (simp! add: vs_add_mult_distrib2)
+    qed simp
+  qed
 
-  show "ALL xa:lin x. ALL a. a (*) xa : lin x"; 
-  proof (intro ballI allI);
-    fix x1 a; assume "x1 : lin x"; 
-    thus "a (*) x1 : lin x";
+  show "ALL xa:lin x. ALL a. a (*) xa : lin x" 
+  proof (intro ballI allI)
+    fix x1 a assume "x1 : lin x" 
+    thus "a (*) x1 : lin x"
     proof (unfold lin_def, elim CollectE exE conjE,
-      intro CollectI exI conjI);
-      fix a1; assume "x1 = a1 (*) x";
-      show "a (*) x1 = (a * a1) (*) x"; by (simp!);
-    qed simp;
-  qed; 
-qed;
+      intro CollectI exI conjI)
+      fix a1 assume "x1 = a1 (*) x"
+      show "a (*) x1 = (a * a1) (*) x" by (simp!)
+    qed simp
+  qed 
+qed
 
-text {* Any linear closure is a vector space. *};
+text {* Any linear closure is a vector space. *}
 
 lemma lin_vs [intro??]: 
-  "[| is_vectorspace V; x:V |] ==> is_vectorspace (lin x)";
-proof (rule subspace_vs);
-  assume "is_vectorspace V" "x:V";
-  show "is_subspace (lin x) V"; ..;
-qed;
+  "[| is_vectorspace V; x:V |] ==> is_vectorspace (lin x)"
+proof (rule subspace_vs)
+  assume "is_vectorspace V" "x:V"
+  show "is_subspace (lin x) V" ..
+qed
 
 
 
-subsection {* Sum of two vectorspaces *};
+subsection {* Sum of two vectorspaces *}
 
 text {* The \emph{sum} of two vectorspaces $U$ and $V$ is the set of
-all sums of elements from $U$ and $V$. *};
+all sums of elements from $U$ and $V$. *}
 
-instance set :: (plus) plus; by intro_classes;
+instance set :: (plus) plus by intro_classes
 
 defs vs_sum_def:
-  "U + V == {u + v | u v. u:U & v:V}"; (***
+  "U + V == {u + v | u v. u:U & v:V}" (***
 
 constdefs 
   vs_sum :: 
@@ -224,253 +224,253 @@
 ***)
 
 lemma vs_sumD: 
-  "x: U + V = (EX u:U. EX v:V. x = u + v)";
-    by (unfold vs_sum_def) fast;
+  "x: U + V = (EX u:U. EX v:V. x = u + v)"
+    by (unfold vs_sum_def) fast
 
-lemmas vs_sumE = vs_sumD [RS iffD1, elimify];
+lemmas vs_sumE = vs_sumD [RS iffD1, elimify]
 
 lemma vs_sumI [intro??]: 
-  "[| x:U; y:V; t= x + y |] ==> t : U + V";
-  by (unfold vs_sum_def) fast;
+  "[| x:U; y:V; t= x + y |] ==> t : U + V"
+  by (unfold vs_sum_def) fast
 
-text{* $U$ is a subspace of $U + V$. *};
+text{* $U$ is a subspace of $U + V$. *}
 
 lemma subspace_vs_sum1 [intro??]: 
   "[| is_vectorspace U; is_vectorspace V |]
-  ==> is_subspace U (U + V)";
-proof; 
-  assume "is_vectorspace U" "is_vectorspace V";
-  show "00 : U"; ..;
-  show "U <= U + V";
-  proof (intro subsetI vs_sumI);
-  fix x; assume "x:U";
-    show "x = x + 00"; by (simp!);
-    show "00 : V"; by (simp!);
-  qed;
-  show "ALL x:U. ALL y:U. x + y : U"; 
-  proof (intro ballI);
-    fix x y; assume "x:U" "y:U"; show "x + y : U"; by (simp!);
-  qed;
-  show "ALL x:U. ALL a. a (*) x : U"; 
-  proof (intro ballI allI);
-    fix x a; assume "x:U"; show "a (*) x : U"; by (simp!);
-  qed;
-qed;
+  ==> is_subspace U (U + V)"
+proof 
+  assume "is_vectorspace U" "is_vectorspace V"
+  show "00 : U" ..
+  show "U <= U + V"
+  proof (intro subsetI vs_sumI)
+  fix x assume "x:U"
+    show "x = x + 00" by (simp!)
+    show "00 : V" by (simp!)
+  qed
+  show "ALL x:U. ALL y:U. x + y : U" 
+  proof (intro ballI)
+    fix x y assume "x:U" "y:U" show "x + y : U" by (simp!)
+  qed
+  show "ALL x:U. ALL a. a (*) x : U" 
+  proof (intro ballI allI)
+    fix x a assume "x:U" show "a (*) x : U" by (simp!)
+  qed
+qed
 
-text{* The sum of two subspaces is again a subspace.*};
+text{* The sum of two subspaces is again a subspace.*}
 
 lemma vs_sum_subspace [intro??]: 
   "[| is_subspace U E; is_subspace V E; is_vectorspace E |] 
-  ==> is_subspace (U + V) E";
-proof; 
-  assume "is_subspace U E" "is_subspace V E" "is_vectorspace E";
-  show "00 : U + V";
-  proof (intro vs_sumI);
-    show "00 : U"; ..;
-    show "00 : V"; ..;
-    show "(00::'a) = 00 + 00"; by (simp!);
-  qed;
+  ==> is_subspace (U + V) E"
+proof 
+  assume "is_subspace U E" "is_subspace V E" "is_vectorspace E"
+  show "00 : U + V"
+  proof (intro vs_sumI)
+    show "00 : U" ..
+    show "00 : V" ..
+    show "(00::'a) = 00 + 00" by (simp!)
+  qed
   
-  show "U + V <= E";
-  proof (intro subsetI, elim vs_sumE bexE);
-    fix x u v; assume "u : U" "v : V" "x = u + v";
-    show "x:E"; by (simp!);
-  qed;
+  show "U + V <= E"
+  proof (intro subsetI, elim vs_sumE bexE)
+    fix x u v assume "u : U" "v : V" "x = u + v"
+    show "x:E" by (simp!)
+  qed
   
-  show "ALL x: U + V. ALL y: U + V. x + y : U + V";
-  proof (intro ballI);
-    fix x y; assume "x : U + V" "y : U + V";
-    thus "x + y : U + V";
-    proof (elim vs_sumE bexE, intro vs_sumI);
-      fix ux vx uy vy; 
+  show "ALL x: U + V. ALL y: U + V. x + y : U + V"
+  proof (intro ballI)
+    fix x y assume "x : U + V" "y : U + V"
+    thus "x + y : U + V"
+    proof (elim vs_sumE bexE, intro vs_sumI)
+      fix ux vx uy vy 
       assume "ux : U" "vx : V" "x = ux + vx" 
-	and "uy : U" "vy : V" "y = uy + vy";
-      show "x + y = (ux + uy) + (vx + vy)"; by (simp!);
-    qed (simp!)+;
-  qed;
+	and "uy : U" "vy : V" "y = uy + vy"
+      show "x + y = (ux + uy) + (vx + vy)" by (simp!)
+    qed (simp!)+
+  qed
 
-  show "ALL x : U + V. ALL a. a (*) x : U + V";
-  proof (intro ballI allI);
-    fix x a; assume "x : U + V";
-    thus "a (*) x : U + V";
-    proof (elim vs_sumE bexE, intro vs_sumI);
-      fix a x u v; assume "u : U" "v : V" "x = u + v";
-      show "a (*) x = (a (*) u) + (a (*) v)"; 
-        by (simp! add: vs_add_mult_distrib1);
-    qed (simp!)+;
-  qed;
-qed;
+  show "ALL x : U + V. ALL a. a (*) x : U + V"
+  proof (intro ballI allI)
+    fix x a assume "x : U + V"
+    thus "a (*) x : U + V"
+    proof (elim vs_sumE bexE, intro vs_sumI)
+      fix a x u v assume "u : U" "v : V" "x = u + v"
+      show "a (*) x = (a (*) u) + (a (*) v)" 
+        by (simp! add: vs_add_mult_distrib1)
+    qed (simp!)+
+  qed
+qed
 
-text{* The sum of two subspaces is a vectorspace. *};
+text{* The sum of two subspaces is a vectorspace. *}
 
 lemma vs_sum_vs [intro??]: 
   "[| is_subspace U E; is_subspace V E; is_vectorspace E |] 
-  ==> is_vectorspace (U + V)";
-proof (rule subspace_vs);
-  assume "is_subspace U E" "is_subspace V E" "is_vectorspace E";
-  show "is_subspace (U + V) E"; ..;
-qed;
+  ==> is_vectorspace (U + V)"
+proof (rule subspace_vs)
+  assume "is_subspace U E" "is_subspace V E" "is_vectorspace E"
+  show "is_subspace (U + V) E" ..
+qed
 
 
 
-subsection {* Direct sums *};
+subsection {* Direct sums *}
 
 
 text {* The sum of $U$ and $V$ is called \emph{direct}, iff the zero 
 element is the only common element of $U$ and $V$. For every element
 $x$ of the direct sum of $U$ and $V$ the decomposition in
-$x = u + v$ with $u \in U$ and $v \in V$ is unique.*}; 
+$x = u + v$ with $u \in U$ and $v \in V$ is unique.*} 
 
 lemma decomp: 
   "[| is_vectorspace E; is_subspace U E; is_subspace V E; 
   U Int V = {00}; u1:U; u2:U; v1:V; v2:V; u1 + v1 = u2 + v2 |] 
-  ==> u1 = u2 & v1 = v2"; 
-proof; 
+  ==> u1 = u2 & v1 = v2" 
+proof 
   assume "is_vectorspace E" "is_subspace U E" "is_subspace V E"  
     "U Int V = {00}" "u1:U" "u2:U" "v1:V" "v2:V" 
-    "u1 + v1 = u2 + v2"; 
-  have eq: "u1 - u2 = v2 - v1"; by (simp! add: vs_add_diff_swap);
-  have u: "u1 - u2 : U"; by (simp!); 
-  with eq; have v': "v2 - v1 : U"; by simp; 
-  have v: "v2 - v1 : V"; by (simp!); 
-  with eq; have u': "u1 - u2 : V"; by simp;
+    "u1 + v1 = u2 + v2" 
+  have eq: "u1 - u2 = v2 - v1" by (simp! add: vs_add_diff_swap)
+  have u: "u1 - u2 : U" by (simp!) 
+  with eq have v': "v2 - v1 : U" by simp 
+  have v: "v2 - v1 : V" by (simp!) 
+  with eq have u': "u1 - u2 : V" by simp
   
-  show "u1 = u2";
-  proof (rule vs_add_minus_eq);
-    show "u1 - u2 = 00"; by (rule Int_singletonD [OF _ u u']); 
-    show "u1 : E"; ..;
-    show "u2 : E"; ..;
-  qed;
+  show "u1 = u2"
+  proof (rule vs_add_minus_eq)
+    show "u1 - u2 = 00" by (rule Int_singletonD [OF _ u u']) 
+    show "u1 : E" ..
+    show "u2 : E" ..
+  qed
 
-  show "v1 = v2";
-  proof (rule vs_add_minus_eq [RS sym]);
-    show "v2 - v1 = 00"; by (rule Int_singletonD [OF _ v' v]);
-    show "v1 : E"; ..;
-    show "v2 : E"; ..;
-  qed;
-qed;
+  show "v1 = v2"
+  proof (rule vs_add_minus_eq [RS sym])
+    show "v2 - v1 = 00" by (rule Int_singletonD [OF _ v' v])
+    show "v1 : E" ..
+    show "v2 : E" ..
+  qed
+qed
 
 text {* An application of the previous lemma will be used in the proof
 of the Hahn-Banach Theorem (see page \pageref{decomp-H0-use}): for any
 element $y + a \mult x_0$ of the direct sum of a vectorspace $H$ and
 the linear closure of $x_0$ the components $y \in H$ and $a$ are
-uniquely determined. *};
+uniquely determined. *}
 
 lemma decomp_H0: 
   "[| is_vectorspace E; is_subspace H E; y1 : H; y2 : H; 
   x0 ~: H; x0 : E; x0 ~= 00; y1 + a1 (*) x0 = y2 + a2 (*) x0 |]
-  ==> y1 = y2 & a1 = a2";
-proof;
+  ==> y1 = y2 & a1 = a2"
+proof
   assume "is_vectorspace E" and h: "is_subspace H E"
      and "y1 : H" "y2 : H" "x0 ~: H" "x0 : E" "x0 ~= 00" 
-         "y1 + a1 (*) x0 = y2 + a2 (*) x0";
+         "y1 + a1 (*) x0 = y2 + a2 (*) x0"
 
-  have c: "y1 = y2 & a1 (*) x0 = a2 (*) x0";
-  proof (rule decomp); 
-    show "a1 (*) x0 : lin x0"; ..; 
-    show "a2 (*) x0 : lin x0"; ..;
-    show "H Int (lin x0) = {00}"; 
-    proof;
-      show "H Int lin x0 <= {00}"; 
-      proof (intro subsetI, elim IntE, rule singleton_iff[RS iffD2]);
-        fix x; assume "x:H" "x : lin x0"; 
-        thus "x = 00";
-        proof (unfold lin_def, elim CollectE exE conjE);
-          fix a; assume "x = a (*) x0";
-          show ?thesis;
-          proof cases;
-            assume "a = (#0::real)"; show ?thesis; by (simp!);
-          next;
-            assume "a ~= (#0::real)"; 
-            from h; have "rinv a (*) a (*) x0 : H"; 
-              by (rule subspace_mult_closed) (simp!);
-            also; have "rinv a (*) a (*) x0 = x0"; by (simp!);
-            finally; have "x0 : H"; .;
-            thus ?thesis; by contradiction;
-          qed;
-       qed;
-      qed;
-      show "{00} <= H Int lin x0";
-      proof -;
-	have "00: H Int lin x0";
-	proof (rule IntI);
-	  show "00:H"; ..;
-	  from lin_vs; show "00 : lin x0"; ..;
-	qed;
-	thus ?thesis; by simp;
-      qed;
-    qed;
-    show "is_subspace (lin x0) E"; ..;
-  qed;
+  have c: "y1 = y2 & a1 (*) x0 = a2 (*) x0"
+  proof (rule decomp) 
+    show "a1 (*) x0 : lin x0" .. 
+    show "a2 (*) x0 : lin x0" ..
+    show "H Int (lin x0) = {00}" 
+    proof
+      show "H Int lin x0 <= {00}" 
+      proof (intro subsetI, elim IntE, rule singleton_iff[RS iffD2])
+        fix x assume "x:H" "x : lin x0" 
+        thus "x = 00"
+        proof (unfold lin_def, elim CollectE exE conjE)
+          fix a assume "x = a (*) x0"
+          show ?thesis
+          proof cases
+            assume "a = (#0::real)" show ?thesis by (simp!)
+          next
+            assume "a ~= (#0::real)" 
+            from h have "rinv a (*) a (*) x0 : H" 
+              by (rule subspace_mult_closed) (simp!)
+            also have "rinv a (*) a (*) x0 = x0" by (simp!)
+            finally have "x0 : H" .
+            thus ?thesis by contradiction
+          qed
+       qed
+      qed
+      show "{00} <= H Int lin x0"
+      proof -
+	have "00: H Int lin x0"
+	proof (rule IntI)
+	  show "00:H" ..
+	  from lin_vs show "00 : lin x0" ..
+	qed
+	thus ?thesis by simp
+      qed
+    qed
+    show "is_subspace (lin x0) E" ..
+  qed
   
-  from c; show "y1 = y2"; by simp;
+  from c show "y1 = y2" by simp
   
-  show  "a1 = a2"; 
-  proof (rule vs_mult_right_cancel [RS iffD1]);
-    from c; show "a1 (*) x0 = a2 (*) x0"; by simp;
-  qed;
-qed;
+  show  "a1 = a2" 
+  proof (rule vs_mult_right_cancel [RS iffD1])
+    from c show "a1 (*) x0 = a2 (*) x0" by simp
+  qed
+qed
 
 text {* Since for any element $y + a \mult x_0$ of the direct sum 
 of a vectorspace $H$ and the linear closure of $x_0$ the components
 $y\in H$ and $a$ are unique, it follows from $y\in H$ that 
-$a = 0$.*}; 
+$a = 0$.*} 
 
 lemma decomp_H0_H: 
   "[| is_vectorspace E; is_subspace H E; t:H; x0 ~: H; x0:E;
   x0 ~= 00 |] 
-  ==> (SOME (y, a). t = y + a (*) x0 & y : H) = (t, (#0::real))";
-proof (rule, unfold split_paired_all);
+  ==> (SOME (y, a). t = y + a (*) x0 & y : H) = (t, (#0::real))"
+proof (rule, unfold split_paired_all)
   assume "is_vectorspace E" "is_subspace H E" "t:H" "x0 ~: H" "x0:E"
-    "x0 ~= 00";
-  have h: "is_vectorspace H"; ..;
-  fix y a; presume t1: "t = y + a (*) x0" and "y:H";
-  have "y = t & a = (#0::real)"; 
-    by (rule decomp_H0) (assumption | (simp!))+;
-  thus "(y, a) = (t, (#0::real))"; by (simp!);
-qed (simp!)+;
+    "x0 ~= 00"
+  have h: "is_vectorspace H" ..
+  fix y a presume t1: "t = y + a (*) x0" and "y:H"
+  have "y = t & a = (#0::real)" 
+    by (rule decomp_H0) (assumption | (simp!))+
+  thus "(y, a) = (t, (#0::real))" by (simp!)
+qed (simp!)+
 
 text {* The components $y\in H$ and $a$ in $y \plus a \mult x_0$ 
 are unique, so the function $h_0$ defined by 
-$h_0 (y \plus a \mult x_0) = h y + a \cdot \xi$ is definite. *};
+$h_0 (y \plus a \mult x_0) = h y + a \cdot \xi$ is definite. *}
 
 lemma h0_definite:
   "[| h0 == (\\<lambda>x. let (y, a) = SOME (y, a). (x = y + a (*) x0 & y:H)
                 in (h y) + a * xi);
   x = y + a (*) x0; is_vectorspace E; is_subspace H E;
   y:H; x0 ~: H; x0:E; x0 ~= 00 |]
-  ==> h0 x = h y + a * xi";
-proof -;  
+  ==> h0 x = h y + a * xi"
+proof -  
   assume 
     "h0 == (\\<lambda>x. let (y, a) = SOME (y, a). (x = y + a (*) x0 & y:H)
                in (h y) + a * xi)"
     "x = y + a (*) x0" "is_vectorspace E" "is_subspace H E"
-    "y:H" "x0 ~: H" "x0:E" "x0 ~= 00";
-  have "x : H + (lin x0)"; 
-    by (simp! add: vs_sum_def lin_def) force+;
-  have "EX! xa. ((\\<lambda>(y, a). x = y + a (*) x0 & y:H) xa)"; 
-  proof;
-    show "EX xa. ((\\<lambda>(y, a). x = y + a (*) x0 & y:H) xa)";
-      by (force!);
-  next;
-    fix xa ya;
+    "y:H" "x0 ~: H" "x0:E" "x0 ~= 00"
+  have "x : H + (lin x0)" 
+    by (simp! add: vs_sum_def lin_def) force+
+  have "EX! xa. ((\\<lambda>(y, a). x = y + a (*) x0 & y:H) xa)" 
+  proof
+    show "EX xa. ((\\<lambda>(y, a). x = y + a (*) x0 & y:H) xa)"
+      by (force!)
+  next
+    fix xa ya
     assume "(\\<lambda>(y,a). x = y + a (*) x0 & y : H) xa"
-           "(\\<lambda>(y,a). x = y + a (*) x0 & y : H) ya";
-    show "xa = ya"; ;
-    proof -;
-      show "fst xa = fst ya & snd xa = snd ya ==> xa = ya"; 
-        by (rule Pair_fst_snd_eq [RS iffD2]);
-      have x: "x = fst xa + snd xa (*) x0 & fst xa : H"; 
-        by (force!);
-      have y: "x = fst ya + snd ya (*) x0 & fst ya : H"; 
-        by (force!);
-      from x y; show "fst xa = fst ya & snd xa = snd ya"; 
-        by (elim conjE) (rule decomp_H0, (simp!)+);
-    qed;
-  qed;
-  hence eq: "(SOME (y, a). x = y + a (*) x0 & y:H) = (y, a)"; 
-    by (rule select1_equality) (force!);
-  thus "h0 x = h y + a * xi"; by (simp! add: Let_def);
-qed;
+           "(\\<lambda>(y,a). x = y + a (*) x0 & y : H) ya"
+    show "xa = ya" 
+    proof -
+      show "fst xa = fst ya & snd xa = snd ya ==> xa = ya" 
+        by (rule Pair_fst_snd_eq [RS iffD2])
+      have x: "x = fst xa + snd xa (*) x0 & fst xa : H" 
+        by (force!)
+      have y: "x = fst ya + snd ya (*) x0 & fst ya : H" 
+        by (force!)
+      from x y show "fst xa = fst ya & snd xa = snd ya" 
+        by (elim conjE) (rule decomp_H0, (simp!)+)
+    qed
+  qed
+  hence eq: "(SOME (y, a). x = y + a (*) x0 & y:H) = (y, a)" 
+    by (rule select1_equality) (force!)
+  thus "h0 x = h y + a * xi" by (simp! add: Let_def)
+qed
 
-end;
\ No newline at end of file
+end
\ No newline at end of file