doc-src/TutorialI/Advanced/Partial.thy
changeset 11285 3826c51d980e
parent 11277 a2bff98d6e5d
child 11310 51e70b7bc315
--- a/doc-src/TutorialI/Advanced/Partial.thy	Fri May 04 15:38:48 2001 +0200
+++ b/doc-src/TutorialI/Advanced/Partial.thy	Fri May 04 15:39:38 2001 +0200
@@ -95,7 +95,7 @@
   "find(f,x) = (if wf(step1 f)
                 then if f x = x then x else find(f, f x)
                 else arbitrary)"
-(hints recdef_simp:same_fst_def step1_def)
+(hints recdef_simp: step1_def)
 
 text{*\noindent
 The recursion equation itself should be clear enough: it is our aborted
@@ -115,8 +115,8 @@
 well-foundedness of the relation given to \isacommand{recdef} is immediate.
 Furthermore, each recursive call descends along that relation: the first
 argument stays unchanged and the second one descends along @{term"step1
-f"}. The proof merely requires unfolding of some definitions, as specified in
-the \isacommand{hints} above.
+f"}. The proof requires unfolding the definition of @{term step1},
+as specified in the \isacommand{hints} above.
 
 Normally you will then derive the following conditional variant of and from
 the recursion equation