src/HOL/Analysis/Set_Integral.thy
changeset 69173 38beaaebe736
parent 68721 53ad5c01be3f
child 69313 b021008c5397
--- a/src/HOL/Analysis/Set_Integral.thy	Sun Oct 21 20:45:01 2018 +0200
+++ b/src/HOL/Analysis/Set_Integral.thy	Sun Oct 21 23:02:52 2018 +0100
@@ -15,11 +15,11 @@
     Notation
 *)
 
-definition "set_borel_measurable M A f \<equiv> (\<lambda>x. indicator A x *\<^sub>R f x) \<in> borel_measurable M"
+definition%important "set_borel_measurable M A f \<equiv> (\<lambda>x. indicator A x *\<^sub>R f x) \<in> borel_measurable M"
 
-definition "set_integrable M A f \<equiv> integrable M (\<lambda>x. indicator A x *\<^sub>R f x)"
+definition%important  "set_integrable M A f \<equiv> integrable M (\<lambda>x. indicator A x *\<^sub>R f x)"
 
-definition "set_lebesgue_integral M A f \<equiv> lebesgue_integral M (\<lambda>x. indicator A x *\<^sub>R f x)"
+definition%important  "set_lebesgue_integral M A f \<equiv> lebesgue_integral M (\<lambda>x. indicator A x *\<^sub>R f x)"
 
 syntax
   "_ascii_set_lebesgue_integral" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'a measure \<Rightarrow> real \<Rightarrow> real"
@@ -319,11 +319,11 @@
     using ae by (auto simp: subset_eq split: split_indicator)
 qed (use assms in \<open>auto simp: set_borel_measurable_def\<close>)
 
-lemma set_borel_measurable_subset:
+lemma%important set_borel_measurable_subset:
   fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
   assumes [measurable]: "set_borel_measurable M A f" "B \<in> sets M" and "B \<subseteq> A"
   shows "set_borel_measurable M B f"
-proof -
+proof%unimportant-
   have "set_borel_measurable M B (\<lambda>x. indicator A x *\<^sub>R f x)"
     using assms unfolding set_borel_measurable_def
     using borel_measurable_indicator borel_measurable_scaleR by blast 
@@ -360,13 +360,13 @@
   finally show ?thesis .
 qed
 
-lemma set_integral_finite_Union:
+lemma%important set_integral_finite_Union:
   fixes f :: "_ \<Rightarrow> _ :: {banach, second_countable_topology}"
   assumes "finite I" "disjoint_family_on A I"
     and "\<And>i. i \<in> I \<Longrightarrow> set_integrable M (A i) f" "\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets M"
   shows "(LINT x:(\<Union>i\<in>I. A i)|M. f x) = (\<Sum>i\<in>I. LINT x:A i|M. f x)"
   using assms
-proof induction
+proof%unimportant induction
   case (insert x F)
   then have "A x \<inter> UNION F A = {}"
     by (meson disjoint_family_on_insert)
@@ -410,14 +410,14 @@
 qed
 
 (* Proof from Royden Real Analysis, p. 91. *)
-lemma lebesgue_integral_countable_add:
+lemma%important lebesgue_integral_countable_add:
   fixes f :: "_ \<Rightarrow> 'a :: {banach, second_countable_topology}"
   assumes meas[intro]: "\<And>i::nat. A i \<in> sets M"
     and disj: "\<And>i j. i \<noteq> j \<Longrightarrow> A i \<inter> A j = {}"
     and intgbl: "set_integrable M (\<Union>i. A i) f"
   shows "LINT x:(\<Union>i. A i)|M. f x = (\<Sum>i. (LINT x:(A i)|M. f x))"
     unfolding set_lebesgue_integral_def
-proof (subst integral_suminf[symmetric])
+proof%unimportant (subst integral_suminf[symmetric])
   show int_A: "integrable M (\<lambda>x. indicat_real (A i) x *\<^sub>R f x)" for i
     using intgbl unfolding set_integrable_def [symmetric]
     by (rule set_integrable_subset) auto
@@ -825,12 +825,12 @@
 The formalization is more painful as one should jump back and forth between reals and ereals and justify
 all the time positivity or integrability (thankfully, measurability is handled more or less automatically).\<close>
 
-lemma Scheffe_lemma1:
+lemma%important Scheffe_lemma1:
   assumes "\<And>n. integrable M (F n)" "integrable M f"
           "AE x in M. (\<lambda>n. F n x) \<longlonglongrightarrow> f x"
           "limsup (\<lambda>n. \<integral>\<^sup>+ x. norm(F n x) \<partial>M) \<le> (\<integral>\<^sup>+ x. norm(f x) \<partial>M)"
   shows "(\<lambda>n. \<integral>\<^sup>+ x. norm(F n x - f x) \<partial>M) \<longlonglongrightarrow> 0"
-proof -
+proof%unimportant -
   have [measurable]: "\<And>n. F n \<in> borel_measurable M" "f \<in> borel_measurable M"
     using assms(1) assms(2) by simp_all
   define G where "G = (\<lambda>n x. norm(f x) + norm(F n x) - norm(F n x - f x))"
@@ -921,26 +921,26 @@
     by (rule tendsto_0_if_Limsup_eq_0_ennreal)
 qed
 
-lemma Scheffe_lemma2:
+lemma%important Scheffe_lemma2:
   fixes F::"nat \<Rightarrow> 'a \<Rightarrow> 'b::{banach, second_countable_topology}"
   assumes "\<And> n::nat. F n \<in> borel_measurable M" "integrable M f"
           "AE x in M. (\<lambda>n. F n x) \<longlonglongrightarrow> f x"
           "\<And>n. (\<integral>\<^sup>+ x. norm(F n x) \<partial>M) \<le> (\<integral>\<^sup>+ x. norm(f x) \<partial>M)"
   shows "(\<lambda>n. \<integral>\<^sup>+ x. norm(F n x - f x) \<partial>M) \<longlonglongrightarrow> 0"
-proof (rule Scheffe_lemma1)
+proof%unimportant (rule Scheffe_lemma1)
   fix n::nat
   have "(\<integral>\<^sup>+ x. norm(f x) \<partial>M) < \<infinity>" using assms(2) by (metis has_bochner_integral_implies_finite_norm integrable.cases)
   then have "(\<integral>\<^sup>+ x. norm(F n x) \<partial>M) < \<infinity>" using assms(4)[of n] by auto
   then show "integrable M (F n)" by (subst integrable_iff_bounded, simp add: assms(1)[of n])
 qed (auto simp add: assms Limsup_bounded)
 
-lemma tendsto_set_lebesgue_integral_at_right:
+lemma%important tendsto_set_lebesgue_integral_at_right:
   fixes a b :: real and f :: "real \<Rightarrow> 'a :: {banach,second_countable_topology}"
   assumes "a < b" and sets: "\<And>a'. a' \<in> {a<..b} \<Longrightarrow> {a'..b} \<in> sets M"
       and "set_integrable M {a<..b} f"
   shows   "((\<lambda>a'. set_lebesgue_integral M {a'..b} f) \<longlongrightarrow>
              set_lebesgue_integral M {a<..b} f) (at_right a)"
-proof (rule tendsto_at_right_sequentially[OF assms(1)], goal_cases)
+proof%unimportant (rule tendsto_at_right_sequentially[OF assms(1)], goal_cases)
   case (1 S)
   have eq: "(\<Union>n. {S n..b}) = {a<..b}"
   proof safe
@@ -961,13 +961,13 @@
   The next lemmas relate convergence of integrals over an interval to
   improper integrals.
 \<close>
-lemma tendsto_set_lebesgue_integral_at_left:
+lemma%important tendsto_set_lebesgue_integral_at_left:
   fixes a b :: real and f :: "real \<Rightarrow> 'a :: {banach,second_countable_topology}"
   assumes "a < b" and sets: "\<And>b'. b' \<in> {a..<b} \<Longrightarrow> {a..b'} \<in> sets M"
       and "set_integrable M {a..<b} f"
   shows   "((\<lambda>b'. set_lebesgue_integral M {a..b'} f) \<longlongrightarrow>
              set_lebesgue_integral M {a..<b} f) (at_left b)"
-proof (rule tendsto_at_left_sequentially[OF assms(1)], goal_cases)
+proof%unimportant (rule tendsto_at_left_sequentially[OF assms(1)], goal_cases)
   case (1 S)
   have eq: "(\<Union>n. {a..S n}) = {a..<b}"
   proof safe
@@ -983,12 +983,12 @@
   with eq show ?case by simp
 qed
 
-lemma tendsto_set_lebesgue_integral_at_top:
+lemma%important tendsto_set_lebesgue_integral_at_top:
   fixes f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}"
   assumes sets: "\<And>b. b \<ge> a \<Longrightarrow> {a..b} \<in> sets M"
       and int: "set_integrable M {a..} f"
   shows "((\<lambda>b. set_lebesgue_integral M {a..b} f) \<longlongrightarrow> set_lebesgue_integral M {a..} f) at_top"
-proof (rule tendsto_at_topI_sequentially)
+proof%unimportant (rule tendsto_at_topI_sequentially)
   fix X :: "nat \<Rightarrow> real" assume "filterlim X at_top sequentially"
   show "(\<lambda>n. set_lebesgue_integral M {a..X n} f) \<longlonglongrightarrow> set_lebesgue_integral M {a..} f"
     unfolding set_lebesgue_integral_def
@@ -1020,12 +1020,12 @@
   qed
 qed
 
-lemma tendsto_set_lebesgue_integral_at_bot:
+lemma%important tendsto_set_lebesgue_integral_at_bot:
   fixes f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}"
   assumes sets: "\<And>a. a \<le> b \<Longrightarrow> {a..b} \<in> sets M"
       and int: "set_integrable M {..b} f"
     shows "((\<lambda>a. set_lebesgue_integral M {a..b} f) \<longlongrightarrow> set_lebesgue_integral M {..b} f) at_bot"
-proof (rule tendsto_at_botI_sequentially)
+proof%unimportant (rule tendsto_at_botI_sequentially)
   fix X :: "nat \<Rightarrow> real" assume "filterlim X at_bot sequentially"
   show "(\<lambda>n. set_lebesgue_integral M {X n..b} f) \<longlonglongrightarrow> set_lebesgue_integral M {..b} f"
     unfolding set_lebesgue_integral_def