src/HOL/Quotient_Examples/LarryDatatype.thy
changeset 36524 3909002beca5
parent 36523 a294e4ebe0a3
child 36525 2584289edbb0
child 36529 11c750bc7acf
--- a/src/HOL/Quotient_Examples/LarryDatatype.thy	Wed Apr 28 17:42:37 2010 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,394 +0,0 @@
-theory LarryDatatype
-imports Main Quotient_Syntax
-begin
-
-subsection{*Defining the Free Algebra*}
-
-datatype
-  freemsg = NONCE  nat
-        | MPAIR  freemsg freemsg
-        | CRYPT  nat freemsg  
-        | DECRYPT  nat freemsg
-
-inductive 
-  msgrel::"freemsg \<Rightarrow> freemsg \<Rightarrow> bool" (infixl "\<sim>" 50)
-where 
-  CD:    "CRYPT K (DECRYPT K X) \<sim> X"
-| DC:    "DECRYPT K (CRYPT K X) \<sim> X"
-| NONCE: "NONCE N \<sim> NONCE N"
-| MPAIR: "\<lbrakk>X \<sim> X'; Y \<sim> Y'\<rbrakk> \<Longrightarrow> MPAIR X Y \<sim> MPAIR X' Y'"
-| CRYPT: "X \<sim> X' \<Longrightarrow> CRYPT K X \<sim> CRYPT K X'"
-| DECRYPT: "X \<sim> X' \<Longrightarrow> DECRYPT K X \<sim> DECRYPT K X'"
-| SYM:   "X \<sim> Y \<Longrightarrow> Y \<sim> X"
-| TRANS: "\<lbrakk>X \<sim> Y; Y \<sim> Z\<rbrakk> \<Longrightarrow> X \<sim> Z"
-
-lemmas msgrel.intros[intro]
-
-text{*Proving that it is an equivalence relation*}
-
-lemma msgrel_refl: "X \<sim> X"
-by (induct X, (blast intro: msgrel.intros)+)
-
-theorem equiv_msgrel: "equivp msgrel"
-proof (rule equivpI)
-  show "reflp msgrel" by (simp add: reflp_def msgrel_refl)
-  show "symp msgrel" by (simp add: symp_def, blast intro: msgrel.SYM)
-  show "transp msgrel" by (simp add: transp_def, blast intro: msgrel.TRANS)
-qed
-
-subsection{*Some Functions on the Free Algebra*}
-
-subsubsection{*The Set of Nonces*}
-
-fun
-  freenonces :: "freemsg \<Rightarrow> nat set"
-where
-  "freenonces (NONCE N) = {N}"
-| "freenonces (MPAIR X Y) = freenonces X \<union> freenonces Y"
-| "freenonces (CRYPT K X) = freenonces X"
-| "freenonces (DECRYPT K X) = freenonces X"
-
-theorem msgrel_imp_eq_freenonces: 
-  assumes a: "U \<sim> V"
-  shows "freenonces U = freenonces V"
-  using a by (induct) (auto) 
-
-subsubsection{*The Left Projection*}
-
-text{*A function to return the left part of the top pair in a message.  It will
-be lifted to the initial algrebra, to serve as an example of that process.*}
-fun
-  freeleft :: "freemsg \<Rightarrow> freemsg"
-where
-  "freeleft (NONCE N) = NONCE N"
-| "freeleft (MPAIR X Y) = X"
-| "freeleft (CRYPT K X) = freeleft X"
-| "freeleft (DECRYPT K X) = freeleft X"
-
-text{*This theorem lets us prove that the left function respects the
-equivalence relation.  It also helps us prove that MPair
-  (the abstract constructor) is injective*}
-lemma msgrel_imp_eqv_freeleft_aux:
-  shows "freeleft U \<sim> freeleft U"
-  by (induct rule: freeleft.induct) (auto)
-
-theorem msgrel_imp_eqv_freeleft:
-  assumes a: "U \<sim> V" 
-  shows "freeleft U \<sim> freeleft V"
-  using a
-  by (induct) (auto intro: msgrel_imp_eqv_freeleft_aux)
-
-subsubsection{*The Right Projection*}
-
-text{*A function to return the right part of the top pair in a message.*}
-fun
-  freeright :: "freemsg \<Rightarrow> freemsg"
-where
-  "freeright (NONCE N) = NONCE N"
-| "freeright (MPAIR X Y) = Y"
-| "freeright (CRYPT K X) = freeright X"
-| "freeright (DECRYPT K X) = freeright X"
-
-text{*This theorem lets us prove that the right function respects the
-equivalence relation.  It also helps us prove that MPair
-  (the abstract constructor) is injective*}
-lemma msgrel_imp_eqv_freeright_aux:
-  shows "freeright U \<sim> freeright U"
-  by (induct rule: freeright.induct) (auto)
-
-theorem msgrel_imp_eqv_freeright:
-  assumes a: "U \<sim> V" 
-  shows "freeright U \<sim> freeright V"
-  using a
-  by (induct) (auto intro: msgrel_imp_eqv_freeright_aux)
-
-subsubsection{*The Discriminator for Constructors*}
-
-text{*A function to distinguish nonces, mpairs and encryptions*}
-fun 
-  freediscrim :: "freemsg \<Rightarrow> int"
-where
-   "freediscrim (NONCE N) = 0"
- | "freediscrim (MPAIR X Y) = 1"
- | "freediscrim (CRYPT K X) = freediscrim X + 2"
- | "freediscrim (DECRYPT K X) = freediscrim X - 2"
-
-text{*This theorem helps us prove @{term "Nonce N \<noteq> MPair X Y"}*}
-theorem msgrel_imp_eq_freediscrim:
-  assumes a: "U \<sim> V"
-  shows "freediscrim U = freediscrim V"
-  using a by (induct) (auto)
-
-subsection{*The Initial Algebra: A Quotiented Message Type*}
-
-quotient_type msg = freemsg / msgrel
-  by (rule equiv_msgrel)
-
-text{*The abstract message constructors*}
-
-quotient_definition
-  "Nonce :: nat \<Rightarrow> msg"
-is
-  "NONCE"
-
-quotient_definition
-  "MPair :: msg \<Rightarrow> msg \<Rightarrow> msg"
-is
-  "MPAIR"
-
-quotient_definition
-  "Crypt :: nat \<Rightarrow> msg \<Rightarrow> msg"
-is
-  "CRYPT"
-
-quotient_definition
-  "Decrypt :: nat \<Rightarrow> msg \<Rightarrow> msg"
-is
-  "DECRYPT"
-
-lemma [quot_respect]:
-  shows "(op = ===> op \<sim> ===> op \<sim>) CRYPT CRYPT"
-by (auto intro: CRYPT)
-
-lemma [quot_respect]:
-  shows "(op = ===> op \<sim> ===> op \<sim>) DECRYPT DECRYPT"
-by (auto intro: DECRYPT)
-
-text{*Establishing these two equations is the point of the whole exercise*}
-theorem CD_eq [simp]: 
-  shows "Crypt K (Decrypt K X) = X"
-  by (lifting CD)
-
-theorem DC_eq [simp]: 
-  shows "Decrypt K (Crypt K X) = X"
-  by (lifting DC)
-
-subsection{*The Abstract Function to Return the Set of Nonces*}
-
-quotient_definition
-   "nonces:: msg \<Rightarrow> nat set"
-is
-  "freenonces"
-
-text{*Now prove the four equations for @{term nonces}*}
-
-lemma [quot_respect]:
-  shows "(op \<sim> ===> op =) freenonces freenonces"
-  by (simp add: msgrel_imp_eq_freenonces)
-
-lemma [quot_respect]:
-  shows "(op = ===> op \<sim>) NONCE NONCE"
-  by (simp add: NONCE)
-
-lemma nonces_Nonce [simp]: 
-  shows "nonces (Nonce N) = {N}"
-  by (lifting freenonces.simps(1))
- 
-lemma [quot_respect]:
-  shows " (op \<sim> ===> op \<sim> ===> op \<sim>) MPAIR MPAIR"
-  by (simp add: MPAIR)
-
-lemma nonces_MPair [simp]: 
-  shows "nonces (MPair X Y) = nonces X \<union> nonces Y"
-  by (lifting freenonces.simps(2))
-
-lemma nonces_Crypt [simp]: 
-  shows "nonces (Crypt K X) = nonces X"
-  by (lifting freenonces.simps(3))
-
-lemma nonces_Decrypt [simp]: 
-  shows "nonces (Decrypt K X) = nonces X"
-  by (lifting freenonces.simps(4))
-
-subsection{*The Abstract Function to Return the Left Part*}
-
-quotient_definition
-  "left:: msg \<Rightarrow> msg"
-is
-  "freeleft"
-
-lemma [quot_respect]:
-  shows "(op \<sim> ===> op \<sim>) freeleft freeleft"
-  by (simp add: msgrel_imp_eqv_freeleft)
-
-lemma left_Nonce [simp]: 
-  shows "left (Nonce N) = Nonce N"
-  by (lifting freeleft.simps(1))
-
-lemma left_MPair [simp]: 
-  shows "left (MPair X Y) = X"
-  by (lifting freeleft.simps(2))
-
-lemma left_Crypt [simp]: 
-  shows "left (Crypt K X) = left X"
-  by (lifting freeleft.simps(3))
-
-lemma left_Decrypt [simp]: 
-  shows "left (Decrypt K X) = left X"
-  by (lifting freeleft.simps(4))
-
-subsection{*The Abstract Function to Return the Right Part*}
-
-quotient_definition
-  "right:: msg \<Rightarrow> msg"
-is
-  "freeright"
-
-text{*Now prove the four equations for @{term right}*}
-
-lemma [quot_respect]:
-  shows "(op \<sim> ===> op \<sim>) freeright freeright"
-  by (simp add: msgrel_imp_eqv_freeright)
-
-lemma right_Nonce [simp]: 
-  shows "right (Nonce N) = Nonce N"
-  by (lifting freeright.simps(1))
-
-lemma right_MPair [simp]: 
-  shows "right (MPair X Y) = Y"
-  by (lifting freeright.simps(2))
-
-lemma right_Crypt [simp]: 
-  shows "right (Crypt K X) = right X"
-  by (lifting freeright.simps(3))
-
-lemma right_Decrypt [simp]: 
-  shows "right (Decrypt K X) = right X"
-  by (lifting freeright.simps(4))
-
-subsection{*Injectivity Properties of Some Constructors*}
-
-lemma NONCE_imp_eq: 
-  shows "NONCE m \<sim> NONCE n \<Longrightarrow> m = n"
-  by (drule msgrel_imp_eq_freenonces, simp)
-
-text{*Can also be proved using the function @{term nonces}*}
-lemma Nonce_Nonce_eq [iff]: 
-  shows "(Nonce m = Nonce n) = (m = n)"
-proof
-  assume "Nonce m = Nonce n"
-  then show "m = n" by (lifting NONCE_imp_eq)
-next
-  assume "m = n" 
-  then show "Nonce m = Nonce n" by simp
-qed
-
-lemma MPAIR_imp_eqv_left: 
-  shows "MPAIR X Y \<sim> MPAIR X' Y' \<Longrightarrow> X \<sim> X'"
-  by (drule msgrel_imp_eqv_freeleft) (simp)
-
-lemma MPair_imp_eq_left: 
-  assumes eq: "MPair X Y = MPair X' Y'" 
-  shows "X = X'"
-  using eq by (lifting MPAIR_imp_eqv_left)
-
-lemma MPAIR_imp_eqv_right: 
-  shows "MPAIR X Y \<sim> MPAIR X' Y' \<Longrightarrow> Y \<sim> Y'"
-  by (drule msgrel_imp_eqv_freeright) (simp)
-
-lemma MPair_imp_eq_right: 
-  shows "MPair X Y = MPair X' Y' \<Longrightarrow> Y = Y'"
-  by (lifting  MPAIR_imp_eqv_right)
-
-theorem MPair_MPair_eq [iff]: 
-  shows "(MPair X Y = MPair X' Y') = (X=X' & Y=Y')" 
-  by (blast dest: MPair_imp_eq_left MPair_imp_eq_right)
-
-lemma NONCE_neqv_MPAIR: 
-  shows "\<not>(NONCE m \<sim> MPAIR X Y)"
-  by (auto dest: msgrel_imp_eq_freediscrim)
-
-theorem Nonce_neq_MPair [iff]: 
-  shows "Nonce N \<noteq> MPair X Y"
-  by (lifting NONCE_neqv_MPAIR)
-
-text{*Example suggested by a referee*}
-
-lemma CRYPT_NONCE_neq_NONCE:
-  shows "\<not>(CRYPT K (NONCE M) \<sim> NONCE N)"
-  by (auto dest: msgrel_imp_eq_freediscrim)
-
-theorem Crypt_Nonce_neq_Nonce: 
-  shows "Crypt K (Nonce M) \<noteq> Nonce N"
-  by (lifting CRYPT_NONCE_neq_NONCE)
-
-text{*...and many similar results*}
-lemma CRYPT2_NONCE_neq_NONCE: 
-  shows "\<not>(CRYPT K (CRYPT K' (NONCE M)) \<sim> NONCE N)"
-  by (auto dest: msgrel_imp_eq_freediscrim)  
-
-theorem Crypt2_Nonce_neq_Nonce: 
-  shows "Crypt K (Crypt K' (Nonce M)) \<noteq> Nonce N"
-  by (lifting CRYPT2_NONCE_neq_NONCE) 
-
-theorem Crypt_Crypt_eq [iff]: 
-  shows "(Crypt K X = Crypt K X') = (X=X')" 
-proof
-  assume "Crypt K X = Crypt K X'"
-  hence "Decrypt K (Crypt K X) = Decrypt K (Crypt K X')" by simp
-  thus "X = X'" by simp
-next
-  assume "X = X'"
-  thus "Crypt K X = Crypt K X'" by simp
-qed
-
-theorem Decrypt_Decrypt_eq [iff]: 
-  shows "(Decrypt K X = Decrypt K X') = (X=X')" 
-proof
-  assume "Decrypt K X = Decrypt K X'"
-  hence "Crypt K (Decrypt K X) = Crypt K (Decrypt K X')" by simp
-  thus "X = X'" by simp
-next
-  assume "X = X'"
-  thus "Decrypt K X = Decrypt K X'" by simp
-qed
-
-lemma msg_induct_aux:
-  shows "\<lbrakk>\<And>N. P (Nonce N);
-          \<And>X Y. \<lbrakk>P X; P Y\<rbrakk> \<Longrightarrow> P (MPair X Y);
-          \<And>K X. P X \<Longrightarrow> P (Crypt K X);
-          \<And>K X. P X \<Longrightarrow> P (Decrypt K X)\<rbrakk> \<Longrightarrow> P msg"
-  by (lifting freemsg.induct)
-
-lemma msg_induct [case_names Nonce MPair Crypt Decrypt, cases type: msg]:
-  assumes N: "\<And>N. P (Nonce N)"
-      and M: "\<And>X Y. \<lbrakk>P X; P Y\<rbrakk> \<Longrightarrow> P (MPair X Y)"
-      and C: "\<And>K X. P X \<Longrightarrow> P (Crypt K X)"
-      and D: "\<And>K X. P X \<Longrightarrow> P (Decrypt K X)"
-  shows "P msg"
-  using N M C D by (rule msg_induct_aux)
-
-subsection{*The Abstract Discriminator*}
-
-text{*However, as @{text Crypt_Nonce_neq_Nonce} above illustrates, we don't
-need this function in order to prove discrimination theorems.*}
-
-quotient_definition
-  "discrim:: msg \<Rightarrow> int"
-is
-  "freediscrim"
-
-text{*Now prove the four equations for @{term discrim}*}
-
-lemma [quot_respect]:
-  shows "(op \<sim> ===> op =) freediscrim freediscrim"
-  by (auto simp add: msgrel_imp_eq_freediscrim)
-
-lemma discrim_Nonce [simp]: 
-  shows "discrim (Nonce N) = 0"
-  by (lifting freediscrim.simps(1))
-
-lemma discrim_MPair [simp]: 
-  shows "discrim (MPair X Y) = 1"
-  by (lifting freediscrim.simps(2))
-
-lemma discrim_Crypt [simp]: 
-  shows "discrim (Crypt K X) = discrim X + 2"
-  by (lifting freediscrim.simps(3))
-
-lemma discrim_Decrypt [simp]: 
-  shows "discrim (Decrypt K X) = discrim X - 2"
-  by (lifting freediscrim.simps(4))
-
-end
-