--- a/src/HOL/RealVector.thy Mon Apr 26 11:34:15 2010 +0200
+++ b/src/HOL/RealVector.thy Mon Apr 26 11:34:17 2010 +0200
@@ -207,7 +207,7 @@
by (rule inverse_unique, simp)
lemma inverse_scaleR_distrib:
- fixes x :: "'a::{real_div_algebra,division_by_zero}"
+ fixes x :: "'a::{real_div_algebra,division_ring_inverse_zero}"
shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
apply (case_tac "a = 0", simp)
apply (case_tac "x = 0", simp)
@@ -250,7 +250,7 @@
lemma of_real_inverse [simp]:
"of_real (inverse x) =
- inverse (of_real x :: 'a::{real_div_algebra,division_by_zero})"
+ inverse (of_real x :: 'a::{real_div_algebra,division_ring_inverse_zero})"
by (simp add: of_real_def inverse_scaleR_distrib)
lemma nonzero_of_real_divide:
@@ -260,7 +260,7 @@
lemma of_real_divide [simp]:
"of_real (x / y) =
- (of_real x / of_real y :: 'a::{real_field,division_by_zero})"
+ (of_real x / of_real y :: 'a::{real_field,division_ring_inverse_zero})"
by (simp add: divide_inverse)
lemma of_real_power [simp]:
@@ -370,7 +370,7 @@
done
lemma Reals_inverse [simp]:
- fixes a :: "'a::{real_div_algebra,division_by_zero}"
+ fixes a :: "'a::{real_div_algebra,division_ring_inverse_zero}"
shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals"
apply (auto simp add: Reals_def)
apply (rule range_eqI)
@@ -386,7 +386,7 @@
done
lemma Reals_divide [simp]:
- fixes a b :: "'a::{real_field,division_by_zero}"
+ fixes a b :: "'a::{real_field,division_ring_inverse_zero}"
shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
apply (auto simp add: Reals_def)
apply (rule range_eqI)
@@ -726,7 +726,7 @@
done
lemma norm_inverse:
- fixes a :: "'a::{real_normed_div_algebra,division_by_zero}"
+ fixes a :: "'a::{real_normed_div_algebra,division_ring_inverse_zero}"
shows "norm (inverse a) = inverse (norm a)"
apply (case_tac "a = 0", simp)
apply (erule nonzero_norm_inverse)
@@ -738,7 +738,7 @@
by (simp add: divide_inverse norm_mult nonzero_norm_inverse)
lemma norm_divide:
- fixes a b :: "'a::{real_normed_field,division_by_zero}"
+ fixes a b :: "'a::{real_normed_field,division_ring_inverse_zero}"
shows "norm (a / b) = norm a / norm b"
by (simp add: divide_inverse norm_mult norm_inverse)