--- a/src/HOL/Nominal/Nominal.thy Tue Jan 16 09:12:16 2018 +0100
+++ b/src/HOL/Nominal/Nominal.thy Tue Jan 16 09:30:00 2018 +0100
@@ -770,7 +770,7 @@
apply(rule at_prm_eq_refl)
done
-\<comment>"there always exists an atom that is not being in a finite set"
+\<comment> \<open>there always exists an atom that is not being in a finite set\<close>
lemma ex_in_inf:
fixes A::"'x set"
assumes at: "at TYPE('x)"
@@ -833,7 +833,7 @@
then show "\<exists>(b::'x). a\<noteq>b" by blast
qed
-\<comment>"the at-props imply the pt-props"
+\<comment> \<open>the at-props imply the pt-props\<close>
lemma at_pt_inst:
assumes at: "at TYPE('x)"
shows "pt TYPE('x) TYPE('x)"
@@ -1354,7 +1354,7 @@
apply(simp add: pt_pi_rev[OF pt, OF at])
done
-\<comment> "some helper lemmas for the pt_perm_supp_ineq lemma"
+\<comment> \<open>some helper lemmas for the pt_perm_supp_ineq lemma\<close>
lemma Collect_permI:
fixes pi :: "'x prm"
and x :: "'a"
@@ -1672,7 +1672,7 @@
shows "pi\<bullet>(c\<sharp>x) = (pi\<bullet>c)\<sharp>(pi\<bullet>x)"
by (simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp] dj_perm_forget[OF dj] perm_bool)
-\<comment>"the co-set of a finite set is infinte"
+\<comment> \<open>the co-set of a finite set is infinte\<close>
lemma finite_infinite:
assumes a: "finite {b::'x. P b}"
and b: "infinite (UNIV::'x set)"
@@ -2015,7 +2015,7 @@
by (simp add: perm_fun_def pt_rev_pi[OF pt, OF at])
-\<comment>"sometimes pt_fun_app_eq does too much; this lemma 'corrects it'"
+\<comment> \<open>sometimes pt_fun_app_eq does too much; this lemma 'corrects it'\<close>
lemma pt_perm:
fixes x :: "'a"
and pi1 :: "'x prm"
@@ -2056,7 +2056,7 @@
qed
qed
-\<comment> "two helper lemmas for the equivariance of functions"
+\<comment> \<open>two helper lemmas for the equivariance of functions\<close>
lemma pt_swap_eq_aux:
fixes y :: "'a"
and pi :: "'x prm"
@@ -2819,7 +2819,7 @@
thus "fr1 = fr2" by force
qed
-\<comment> "packaging the freshness lemma into a function"
+\<comment> \<open>packaging the freshness lemma into a function\<close>
definition fresh_fun :: "('x\<Rightarrow>'a)\<Rightarrow>'a" where
"fresh_fun (h) \<equiv> THE fr. (\<forall>(a::'x). a\<sharp>h \<longrightarrow> (h a) = fr)"
@@ -3068,7 +3068,7 @@
show "?LHS=?RHS"
proof -
have "(c=a) \<or> (c=b) \<or> (c\<noteq>a \<and> c\<noteq>b)" by blast
- moreover \<comment>"case c=a"
+ moreover \<comment> \<open>case c=a\<close>
{ have "nSome(x) = nSome([(a,b)]\<bullet>y)" using a2 by simp
also have "\<dots> = nSome([(b,a)]\<bullet>y)" by (simp, rule pt3[OF pt], rule at_ds5[OF at])
finally have "nSome(x) = nSome([(b,a)]\<bullet>y)" by simp
@@ -3076,7 +3076,7 @@
assume "c=a"
ultimately have "?LHS=?RHS" using a1 a3 by simp
}
- moreover \<comment> "case c=b"
+ moreover \<comment> \<open>case c=b\<close>
{ have a4: "y=[(a,b)]\<bullet>x" using a2 by (simp only: pt_swap_bij[OF pt, OF at])
hence "a\<sharp>([(a,b)]\<bullet>x)" using a3 by simp
hence "b\<sharp>x" by (simp add: at_calc[OF at] pt_fresh_left[OF pt, OF at])
@@ -3084,7 +3084,7 @@
assume "c=b"
ultimately have "?LHS=?RHS" using a1 a4 by simp
}
- moreover \<comment> "case c\<noteq>a \<and> c\<noteq>b"
+ moreover \<comment> \<open>case c\<noteq>a \<and> c\<noteq>b\<close>
{ assume a5: "c\<noteq>a \<and> c\<noteq>b"
moreover
have "c\<sharp>x = c\<sharp>y" using a2 a5 by (force simp add: at_calc[OF at] pt_fresh_left[OF pt, OF at])