--- a/src/ZF/Constructible/Reflection.thy Tue Jan 16 09:12:16 2018 +0100
+++ b/src/ZF/Constructible/Reflection.thy Tue Jan 16 09:30:00 2018 +0100
@@ -38,9 +38,9 @@
defines "M(x) == \<exists>a. Ord(a) & x \<in> Mset(a)"
and "Reflects(Cl,P,Q) == Closed_Unbounded(Cl) &
(\<forall>a. Cl(a) \<longrightarrow> (\<forall>x\<in>Mset(a). P(x) \<longleftrightarrow> Q(a,x)))"
- fixes F0 \<comment>\<open>ordinal for a specific value @{term y}\<close>
- fixes FF \<comment>\<open>sup over the whole level, @{term "y\<in>Mset(a)"}\<close>
- fixes ClEx \<comment>\<open>Reflecting ordinals for the formula @{term "\<exists>z. P"}\<close>
+ fixes F0 \<comment> \<open>ordinal for a specific value @{term y}\<close>
+ fixes FF \<comment> \<open>sup over the whole level, @{term "y\<in>Mset(a)"}\<close>
+ fixes ClEx \<comment> \<open>Reflecting ordinals for the formula @{term "\<exists>z. P"}\<close>
defines "F0(P,y) == \<mu> b. (\<exists>z. M(z) & P(<y,z>)) \<longrightarrow>
(\<exists>z\<in>Mset(b). P(<y,z>))"
and "FF(P) == \<lambda>a. \<Union>y\<in>Mset(a). F0(P,y)"
@@ -136,9 +136,9 @@
text\<open>Locale for the induction hypothesis\<close>
locale ex_reflection = reflection +
- fixes P \<comment>"the original formula"
- fixes Q \<comment>"the reflected formula"
- fixes Cl \<comment>"the class of reflecting ordinals"
+ fixes P \<comment> \<open>the original formula\<close>
+ fixes Q \<comment> \<open>the reflected formula\<close>
+ fixes Cl \<comment> \<open>the class of reflecting ordinals\<close>
assumes Cl_reflects: "[| Cl(a); Ord(a) |] ==> \<forall>x\<in>Mset(a). P(x) \<longleftrightarrow> Q(a,x)"
lemma (in ex_reflection) ClEx_downward: