src/HOL/Multivariate_Analysis/Extension.thy
changeset 63305 3b6975875633
child 63306 00090a0cd17f
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Multivariate_Analysis/Extension.thy	Wed Jun 15 15:52:24 2016 +0100
@@ -0,0 +1,547 @@
+(*  Title:      HOL/Multivariate_Analysis/Extension.thy
+    Authors:    LC Paulson, based on material from HOL Light
+*)
+
+section \<open>Continuous extensions of functions: Urysohn's lemma, Dugundji extension theorem, Tietze\<close>
+
+theory Extension
+imports Convex_Euclidean_Space
+begin
+
+subsection\<open>Partitions of unity subordinate to locally finite open coverings\<close>
+
+text\<open>A difference from HOL Light: all summations over infinite sets equal zero,
+   so the "support" must be made explicit in the summation below!\<close>
+
+proposition subordinate_partition_of_unity:
+  fixes S :: "'a :: euclidean_space set"
+  assumes "S \<subseteq> \<Union>\<C>" and opC: "\<And>T. T \<in> \<C> \<Longrightarrow> open T"
+      and fin: "\<And>x. x \<in> S \<Longrightarrow> \<exists>V. open V \<and> x \<in> V \<and> finite {U \<in> \<C>. U \<inter> V \<noteq> {}}"
+  obtains F :: "['a set, 'a] \<Rightarrow> real"
+    where "\<And>U. U \<in> \<C> \<Longrightarrow> continuous_on S (F U) \<and> (\<forall>x \<in> S. 0 \<le> F U x)"
+      and "\<And>x U. \<lbrakk>U \<in> \<C>; x \<in> S; x \<notin> U\<rbrakk> \<Longrightarrow> F U x = 0"
+      and "\<And>x. x \<in> S \<Longrightarrow> supp_setsum (\<lambda>W. F W x) \<C> = 1"
+      and "\<And>x. x \<in> S \<Longrightarrow> \<exists>V. open V \<and> x \<in> V \<and> finite {U \<in> \<C>. \<exists>x\<in>V. F U x \<noteq> 0}"
+proof (cases "\<exists>W. W \<in> \<C> \<and> S \<subseteq> W")
+  case True
+    then obtain W where "W \<in> \<C>" "S \<subseteq> W" by metis
+    then show ?thesis
+      apply (rule_tac F = "\<lambda>V x. if V = W then 1 else 0" in that)
+      apply (auto simp: continuous_on_const supp_setsum_def support_def)
+      done
+next
+  case False
+    have nonneg: "0 \<le> supp_setsum (\<lambda>V. setdist {x} (S - V)) \<C>" for x
+      by (simp add: supp_setsum_def setsum_nonneg)
+    have sd_pos: "0 < setdist {x} (S - V)" if "V \<in> \<C>" "x \<in> S" "x \<in> V" for V x
+    proof -
+      have "closedin (subtopology euclidean S) (S - V)"
+        by (simp add: Diff_Diff_Int Diff_subset closedin_def opC openin_open_Int \<open>V \<in> \<C>\<close>)
+      with that False setdist_eq_0_closedin [of S "S-V" x] setdist_pos_le [of "{x}" "S - V"]
+        show ?thesis
+          by (simp add: order_class.order.order_iff_strict)
+    qed
+    have ss_pos: "0 < supp_setsum (\<lambda>V. setdist {x} (S - V)) \<C>" if "x \<in> S" for x
+    proof -
+      obtain U where "U \<in> \<C>" "x \<in> U" using \<open>x \<in> S\<close> \<open>S \<subseteq> \<Union>\<C>\<close>
+        by blast
+      obtain V where "open V" "x \<in> V" "finite {U \<in> \<C>. U \<inter> V \<noteq> {}}"
+        using \<open>x \<in> S\<close> fin by blast
+      then have *: "finite {A \<in> \<C>. \<not> S \<subseteq> A \<and> x \<notin> closure (S - A)}"
+        using closure_def that by (blast intro: rev_finite_subset)
+      have "x \<notin> closure (S - U)"
+        by (metis \<open>U \<in> \<C>\<close> \<open>x \<in> U\<close> less_irrefl sd_pos setdist_eq_0_sing_1 that)
+      then show ?thesis
+        apply (simp add: setdist_eq_0_sing_1 supp_setsum_def support_def)
+        apply (rule ordered_comm_monoid_add_class.setsum_pos2 [OF *, of U])
+        using \<open>U \<in> \<C>\<close> \<open>x \<in> U\<close> False
+        apply (auto simp: setdist_pos_le sd_pos that)
+        done
+    qed
+    define F where
+      "F \<equiv> \<lambda>W x. if x \<in> S then setdist {x} (S - W) / supp_setsum (\<lambda>V. setdist {x} (S - V)) \<C>
+                 else 0"
+    show ?thesis
+    proof (rule_tac F = F in that)
+      have "continuous_on S (F U)" if "U \<in> \<C>" for U
+      proof -
+        have *: "continuous_on S (\<lambda>x. supp_setsum (\<lambda>V. setdist {x} (S - V)) \<C>)"
+        proof (clarsimp simp add: continuous_on_eq_continuous_within)
+          fix x assume "x \<in> S"
+          then obtain X where "open X" and x: "x \<in> S \<inter> X" and finX: "finite {U \<in> \<C>. U \<inter> X \<noteq> {}}"
+            using assms by blast
+          then have OSX: "openin (subtopology euclidean S) (S \<inter> X)" by blast
+          have sumeq: "\<And>x. x \<in> S \<inter> X \<Longrightarrow>
+                     (\<Sum>V | V \<in> \<C> \<and> V \<inter> X \<noteq> {}. setdist {x} (S - V))
+                     = supp_setsum (\<lambda>V. setdist {x} (S - V)) \<C>"
+            apply (simp add: supp_setsum_def)
+            apply (rule setsum.mono_neutral_right [OF finX])
+            apply (auto simp: setdist_eq_0_sing_1 support_def subset_iff)
+            apply (meson DiffI closure_subset disjoint_iff_not_equal subsetCE)
+            done
+          show "continuous (at x within S) (\<lambda>x. supp_setsum (\<lambda>V. setdist {x} (S - V)) \<C>)"
+            apply (rule continuous_transform_within_openin
+                     [where f = "\<lambda>x. (setsum (\<lambda>V. setdist {x} (S - V)) {V \<in> \<C>. V \<inter> X \<noteq> {}})"
+                        and S ="S \<inter> X"])
+            apply (rule continuous_intros continuous_at_setdist continuous_at_imp_continuous_at_within OSX x)+
+            apply (simp add: sumeq)
+            done
+        qed
+        show ?thesis
+          apply (simp add: F_def)
+          apply (rule continuous_intros *)+
+          using ss_pos apply force
+          done
+      qed
+      moreover have "\<lbrakk>U \<in> \<C>; x \<in> S\<rbrakk> \<Longrightarrow> 0 \<le> F U x" for U x
+        using nonneg [of x] by (simp add: F_def divide_simps setdist_pos_le)
+      ultimately show "\<And>U. U \<in> \<C> \<Longrightarrow> continuous_on S (F U) \<and> (\<forall>x\<in>S. 0 \<le> F U x)"
+        by metis
+    next
+      show "\<And>x U. \<lbrakk>U \<in> \<C>; x \<in> S; x \<notin> U\<rbrakk> \<Longrightarrow> F U x = 0"
+        by (simp add: setdist_eq_0_sing_1 closure_def F_def)
+    next
+      show "supp_setsum (\<lambda>W. F W x) \<C> = 1" if "x \<in> S" for x
+        using that ss_pos [OF that]
+        by (simp add: F_def divide_simps supp_setsum_divide_distrib [symmetric])
+    next
+      show "\<exists>V. open V \<and> x \<in> V \<and> finite {U \<in> \<C>. \<exists>x\<in>V. F U x \<noteq> 0}" if "x \<in> S" for x
+        using fin [OF that] that
+        by (fastforce simp: setdist_eq_0_sing_1 closure_def F_def elim!: rev_finite_subset)
+    qed
+qed
+
+
+subsection\<open>Urysohn's lemma (for real^N, where the proof is easy using distances)\<close>
+
+lemma Urysohn_both_ne:
+  assumes US: "closedin (subtopology euclidean U) S"
+      and UT: "closedin (subtopology euclidean U) T"
+      and "S \<inter> T = {}" "S \<noteq> {}" "T \<noteq> {}" "a \<noteq> b"
+  obtains f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
+    where "continuous_on U f"
+          "\<And>x. x \<in> U \<Longrightarrow> f x \<in> closed_segment a b"
+          "\<And>x. x \<in> U \<Longrightarrow> (f x = a \<longleftrightarrow> x \<in> S)"
+          "\<And>x. x \<in> U \<Longrightarrow> (f x = b \<longleftrightarrow> x \<in> T)"
+proof -
+  have S0: "\<And>x. x \<in> U \<Longrightarrow> setdist {x} S = 0 \<longleftrightarrow> x \<in> S"
+    using \<open>S \<noteq> {}\<close>  US setdist_eq_0_closedin  by auto
+  have T0: "\<And>x. x \<in> U \<Longrightarrow> setdist {x} T = 0 \<longleftrightarrow> x \<in> T"
+    using \<open>T \<noteq> {}\<close>  UT setdist_eq_0_closedin  by auto
+  have sdpos: "0 < setdist {x} S + setdist {x} T" if "x \<in> U" for x
+  proof -
+    have "~ (setdist {x} S = 0 \<and> setdist {x} T = 0)"
+      using assms by (metis IntI empty_iff setdist_eq_0_closedin that)
+    then show ?thesis
+      by (metis add.left_neutral add.right_neutral add_pos_pos linorder_neqE_linordered_idom not_le setdist_pos_le)
+  qed
+  define f where "f \<equiv> \<lambda>x. a + (setdist {x} S / (setdist {x} S + setdist {x} T)) *\<^sub>R (b - a)"
+  show ?thesis
+  proof (rule_tac f = f in that)
+    show "continuous_on U f"
+      using sdpos unfolding f_def
+      by (intro continuous_intros | force)+
+    show "f x \<in> closed_segment a b" if "x \<in> U" for x
+        unfolding f_def
+      apply (simp add: closed_segment_def)
+      apply (rule_tac x="(setdist {x} S / (setdist {x} S + setdist {x} T))" in exI)
+      using sdpos that apply (simp add: algebra_simps)
+      done
+    show "\<And>x. x \<in> U \<Longrightarrow> (f x = a \<longleftrightarrow> x \<in> S)"
+      using S0 \<open>a \<noteq> b\<close> f_def sdpos by force
+    show "(f x = b \<longleftrightarrow> x \<in> T)" if "x \<in> U" for x
+    proof -
+      have "f x = b \<longleftrightarrow> (setdist {x} S / (setdist {x} S + setdist {x} T)) = 1"
+        unfolding f_def
+        apply (rule iffI)
+         apply (metis  \<open>a \<noteq> b\<close> add_diff_cancel_left' eq_iff_diff_eq_0 pth_1 real_vector.scale_right_imp_eq, force)
+        done
+      also have "...  \<longleftrightarrow> setdist {x} T = 0 \<and> setdist {x} S \<noteq> 0"
+        using sdpos that
+        by (simp add: divide_simps) linarith
+      also have "...  \<longleftrightarrow> x \<in> T"
+        using \<open>S \<noteq> {}\<close> \<open>T \<noteq> {}\<close> \<open>S \<inter> T = {}\<close> that
+        by (force simp: S0 T0)
+      finally show ?thesis .
+    qed
+  qed
+qed
+
+proposition Urysohn_local_strong:
+  assumes US: "closedin (subtopology euclidean U) S"
+      and UT: "closedin (subtopology euclidean U) T"
+      and "S \<inter> T = {}" "a \<noteq> b"
+  obtains f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+    where "continuous_on U f"
+          "\<And>x. x \<in> U \<Longrightarrow> f x \<in> closed_segment a b"
+          "\<And>x. x \<in> U \<Longrightarrow> (f x = a \<longleftrightarrow> x \<in> S)"
+          "\<And>x. x \<in> U \<Longrightarrow> (f x = b \<longleftrightarrow> x \<in> T)"
+proof (cases "S = {}")
+  case True show ?thesis
+  proof (cases "T = {}")
+    case True show ?thesis
+    proof (rule_tac f = "\<lambda>x. midpoint a b" in that)
+      show "continuous_on U (\<lambda>x. midpoint a b)"
+        by (intro continuous_intros)
+      show "midpoint a b \<in> closed_segment a b"
+        using csegment_midpoint_subset by blast
+      show "(midpoint a b = a) = (x \<in> S)" for x
+        using \<open>S = {}\<close> \<open>a \<noteq> b\<close> by simp
+      show "(midpoint a b = b) = (x \<in> T)" for x
+        using \<open>T = {}\<close> \<open>a \<noteq> b\<close> by simp
+    qed
+  next
+    case False
+    show ?thesis
+    proof (cases "T = U")
+      case True with \<open>S = {}\<close> \<open>a \<noteq> b\<close> show ?thesis
+        by (rule_tac f = "\<lambda>x. b" in that) (auto simp: continuous_on_const)
+    next
+      case False
+      with UT closedin_subset obtain c where c: "c \<in> U" "c \<notin> T"
+        by fastforce
+      obtain f where f: "continuous_on U f"
+                "\<And>x. x \<in> U \<Longrightarrow> f x \<in> closed_segment (midpoint a b) b"
+                "\<And>x. x \<in> U \<Longrightarrow> (f x = midpoint a b \<longleftrightarrow> x = c)"
+                "\<And>x. x \<in> U \<Longrightarrow> (f x = b \<longleftrightarrow> x \<in> T)"
+        apply (rule Urysohn_both_ne [of U "{c}" T "midpoint a b" "b"])
+        using c \<open>T \<noteq> {}\<close> assms apply simp_all
+        done
+      show ?thesis
+        apply (rule_tac f=f in that)
+        using \<open>S = {}\<close> \<open>T \<noteq> {}\<close> f csegment_midpoint_subset notin_segment_midpoint [OF \<open>a \<noteq> b\<close>]
+        apply force+
+        done
+    qed
+  qed
+next
+  case False
+  show ?thesis
+  proof (cases "T = {}")
+    case True show ?thesis
+    proof (cases "S = U")
+      case True with \<open>T = {}\<close> \<open>a \<noteq> b\<close> show ?thesis
+        by (rule_tac f = "\<lambda>x. a" in that) (auto simp: continuous_on_const)
+    next
+      case False
+      with US closedin_subset obtain c where c: "c \<in> U" "c \<notin> S"
+        by fastforce
+      obtain f where f: "continuous_on U f"
+                "\<And>x. x \<in> U \<Longrightarrow> f x \<in> closed_segment a (midpoint a b)"
+                "\<And>x. x \<in> U \<Longrightarrow> (f x = midpoint a b \<longleftrightarrow> x = c)"
+                "\<And>x. x \<in> U \<Longrightarrow> (f x = a \<longleftrightarrow> x \<in> S)"
+        apply (rule Urysohn_both_ne [of U S "{c}" a "midpoint a b"])
+        using c \<open>S \<noteq> {}\<close> assms apply simp_all
+        apply (metis midpoint_eq_endpoint)
+        done
+      show ?thesis
+        apply (rule_tac f=f in that)
+        using \<open>S \<noteq> {}\<close> \<open>T = {}\<close> f  \<open>a \<noteq> b\<close>
+        apply simp_all
+        apply (metis (no_types) closed_segment_commute csegment_midpoint_subset midpoint_sym subset_iff)
+        apply (metis closed_segment_commute midpoint_sym notin_segment_midpoint)
+        done
+    qed
+  next
+    case False
+    show ?thesis
+      using Urysohn_both_ne [OF US UT \<open>S \<inter> T = {}\<close> \<open>S \<noteq> {}\<close> \<open>T \<noteq> {}\<close> \<open>a \<noteq> b\<close>] that
+      by blast
+  qed
+qed
+
+lemma Urysohn_local:
+  assumes US: "closedin (subtopology euclidean U) S"
+      and UT: "closedin (subtopology euclidean U) T"
+      and "S \<inter> T = {}"
+  obtains f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+    where "continuous_on U f"
+          "\<And>x. x \<in> U \<Longrightarrow> f x \<in> closed_segment a b"
+          "\<And>x. x \<in> S \<Longrightarrow> f x = a"
+          "\<And>x. x \<in> T \<Longrightarrow> f x = b"
+proof (cases "a = b")
+  case True then show ?thesis
+    by (rule_tac f = "\<lambda>x. b" in that) (auto simp: continuous_on_const)
+next
+  case False
+  then show ?thesis
+    apply (rule Urysohn_local_strong [OF assms])
+    apply (erule that, assumption)
+    apply (meson US closedin_singleton closedin_trans)
+    apply (meson UT closedin_singleton closedin_trans)
+    done
+qed
+
+lemma Urysohn_strong:
+  assumes US: "closed S"
+      and UT: "closed T"
+      and "S \<inter> T = {}" "a \<noteq> b"
+  obtains f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+    where "continuous_on UNIV f"
+          "\<And>x. f x \<in> closed_segment a b"
+          "\<And>x. f x = a \<longleftrightarrow> x \<in> S"
+          "\<And>x. f x = b \<longleftrightarrow> x \<in> T"
+apply (rule Urysohn_local_strong [of UNIV S T])
+using assms
+apply (auto simp: closed_closedin)
+done
+
+proposition Urysohn:
+  assumes US: "closed S"
+      and UT: "closed T"
+      and "S \<inter> T = {}"
+  obtains f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+    where "continuous_on UNIV f"
+          "\<And>x. f x \<in> closed_segment a b"
+          "\<And>x. x \<in> S \<Longrightarrow> f x = a"
+          "\<And>x. x \<in> T \<Longrightarrow> f x = b"
+apply (rule Urysohn_local [of UNIV S T a b])
+using assms
+apply (auto simp: closed_closedin)
+done
+
+
+subsection\<open> The Dugundji extension theorem, and Tietze variants as corollaries.\<close>
+
+text\<open>J. Dugundji. An extension of Tietze's theorem. Pacific J. Math. Volume 1, Number 3 (1951), 353-367.
+http://projecteuclid.org/euclid.pjm/1103052106\<close>
+
+theorem Dugundji:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_inner"
+  assumes "convex C" "C \<noteq> {}"
+      and cloin: "closedin (subtopology euclidean U) S"
+      and contf: "continuous_on S f" and "f ` S \<subseteq> C"
+  obtains g where "continuous_on U g" "g ` U \<subseteq> C"
+                  "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+proof (cases "S = {}")
+  case True then show thesis
+    apply (rule_tac g="\<lambda>x. @y. y \<in> C" in that)
+      apply (rule continuous_intros)
+     apply (meson all_not_in_conv \<open>C \<noteq> {}\<close> image_subsetI someI_ex, simp)
+    done
+next
+  case False
+  then have sd_pos: "\<And>x. \<lbrakk>x \<in> U; x \<notin> S\<rbrakk> \<Longrightarrow> 0 < setdist {x} S"
+    using setdist_eq_0_closedin [OF cloin] le_less setdist_pos_le by fastforce
+  define \<B> where "\<B> = {ball x (setdist {x} S / 2) |x. x \<in> U - S}"
+  have [simp]: "\<And>T. T \<in> \<B> \<Longrightarrow> open T"
+    by (auto simp: \<B>_def)
+  have USS: "U - S \<subseteq> \<Union>\<B>"
+    by (auto simp: sd_pos \<B>_def)
+  obtain \<C> where USsub: "U - S \<subseteq> \<Union>\<C>"
+       and nbrhd: "\<And>U. U \<in> \<C> \<Longrightarrow> open U \<and> (\<exists>T. T \<in> \<B> \<and> U \<subseteq> T)"
+       and fin: "\<And>x. x \<in> U - S
+                     \<Longrightarrow> \<exists>V. open V \<and> x \<in> V \<and> finite {U. U \<in> \<C> \<and> U \<inter> V \<noteq> {}}"
+    using paracompact [OF USS] by auto
+  have "\<exists>v a. v \<in> U \<and> v \<notin> S \<and> a \<in> S \<and>
+              T \<subseteq> ball v (setdist {v} S / 2) \<and>
+              dist v a \<le> 2 * setdist {v} S" if "T \<in> \<C>" for T
+  proof -
+    obtain v where v: "T \<subseteq> ball v (setdist {v} S / 2)" "v \<in> U" "v \<notin> S"
+      using \<open>T \<in> \<C>\<close> nbrhd by (force simp: \<B>_def)
+    then obtain a where "a \<in> S" "dist v a < 2 * setdist {v} S"
+      using setdist_ltE [of "{v}" S "2 * setdist {v} S"]
+      using False sd_pos by force
+    with v show ?thesis
+      apply (rule_tac x=v in exI)
+      apply (rule_tac x=a in exI, auto)
+      done
+  qed
+  then obtain \<V> \<A> where
+    VA: "\<And>T. T \<in> \<C> \<Longrightarrow> \<V> T \<in> U \<and> \<V> T \<notin> S \<and> \<A> T \<in> S \<and>
+              T \<subseteq> ball (\<V> T) (setdist {\<V> T} S / 2) \<and>
+              dist (\<V> T) (\<A> T) \<le> 2 * setdist {\<V> T} S"
+    by metis
+  have sdle: "setdist {\<V> T} S \<le> 2 * setdist {v} S" if "T \<in> \<C>" "v \<in> T" for T v
+    using setdist_Lipschitz [of "\<V> T" S v] VA [OF \<open>T \<in> \<C>\<close>] \<open>v \<in> T\<close> by auto
+  have d6: "dist a (\<A> T) \<le> 6 * dist a v" if "T \<in> \<C>" "v \<in> T" "a \<in> S" for T v a
+  proof -
+    have "dist (\<V> T) v < setdist {\<V> T} S / 2"
+      using that VA mem_ball by blast
+    also have "... \<le> setdist {v} S"
+      using sdle [OF \<open>T \<in> \<C>\<close> \<open>v \<in> T\<close>] by simp
+    also have vS: "setdist {v} S \<le> dist a v"
+      by (simp add: setdist_le_dist setdist_sym \<open>a \<in> S\<close>)
+    finally have VTV: "dist (\<V> T) v < dist a v" .
+    have VTS: "setdist {\<V> T} S \<le> 2 * dist a v"
+      using sdle that vS by force
+    have "dist a (\<A> T) \<le> dist a v + dist v (\<V> T) + dist (\<V> T) (\<A> T)"
+      by (metis add.commute add_le_cancel_left dist_commute dist_triangle2 dist_triangle_le)
+    also have "... \<le> dist a v + dist a v + dist (\<V> T) (\<A> T)"
+      using VTV by (simp add: dist_commute)
+    also have "... \<le> 2 * dist a v + 2 * setdist {\<V> T} S"
+      using VA [OF \<open>T \<in> \<C>\<close>] by auto
+    finally show ?thesis
+      using VTS by linarith
+  qed
+  obtain H :: "['a set, 'a] \<Rightarrow> real"
+    where Hcont: "\<And>Z. Z \<in> \<C> \<Longrightarrow> continuous_on (U-S) (H Z)"
+      and Hge0: "\<And>Z x. \<lbrakk>Z \<in> \<C>; x \<in> U-S\<rbrakk> \<Longrightarrow> 0 \<le> H Z x"
+      and Heq0: "\<And>x Z. \<lbrakk>Z \<in> \<C>; x \<in> U-S; x \<notin> Z\<rbrakk> \<Longrightarrow> H Z x = 0"
+      and H1: "\<And>x. x \<in> U-S \<Longrightarrow> supp_setsum (\<lambda>W. H W x) \<C> = 1"
+      and Hfin: "\<And>x. x \<in> U-S \<Longrightarrow> \<exists>V. open V \<and> x \<in> V \<and> finite {U \<in> \<C>. \<exists>x\<in>V. H U x \<noteq> 0}"
+    apply (rule subordinate_partition_of_unity [OF USsub _ fin])
+    using nbrhd by auto
+  define g where "g \<equiv> \<lambda>x. if x \<in> S then f x else supp_setsum (\<lambda>T. H T x *\<^sub>R f(\<A> T)) \<C>"
+  show ?thesis
+  proof (rule that)
+    show "continuous_on U g"
+    proof (clarsimp simp: continuous_on_eq_continuous_within)
+      fix a assume "a \<in> U"
+      show "continuous (at a within U) g"
+      proof (cases "a \<in> S")
+        case True show ?thesis
+        proof (clarsimp simp add: continuous_within_topological)
+          fix W
+          assume "open W" "g a \<in> W"
+          then obtain e where "0 < e" and e: "ball (f a) e \<subseteq> W"
+            using openE True g_def by auto
+          have "continuous (at a within S) f"
+            using True contf continuous_on_eq_continuous_within by blast
+          then obtain d where "0 < d"
+                        and d: "\<And>x. \<lbrakk>x \<in> S; dist x a < d\<rbrakk> \<Longrightarrow> dist (f x) (f a) < e"
+            using continuous_within_eps_delta \<open>0 < e\<close> by force
+          have "g y \<in> ball (f a) e" if "y \<in> U" and y: "y \<in> ball a (d / 6)" for y
+          proof (cases "y \<in> S")
+            case True
+            then have "dist (f a) (f y) < e"
+              by (metis ball_divide_subset_numeral dist_commute in_mono mem_ball y d)
+            then show ?thesis
+              by (simp add: True g_def)
+          next
+            case False
+            have *: "dist (f (\<A> T)) (f a) < e" if "T \<in> \<C>" "H T y \<noteq> 0" for T
+            proof -
+              have "y \<in> T"
+                using Heq0 that False \<open>y \<in> U\<close> by blast
+              have "dist (\<A> T) a < d"
+                using d6 [OF \<open>T \<in> \<C>\<close> \<open>y \<in> T\<close> \<open>a \<in> S\<close>] y
+                by (simp add: dist_commute mult.commute)
+              then show ?thesis
+                using VA [OF \<open>T \<in> \<C>\<close>] by (auto simp: d)
+            qed
+            have "supp_setsum (\<lambda>T. H T y *\<^sub>R f (\<A> T)) \<C> \<in> ball (f a) e"
+              apply (rule convex_supp_setsum [OF convex_ball])
+              apply (simp_all add: False H1 Hge0 \<open>y \<in> U\<close>)
+              by (metis dist_commute *)
+            then show ?thesis
+              by (simp add: False g_def)
+          qed
+          then show "\<exists>A. open A \<and> a \<in> A \<and> (\<forall>y\<in>U. y \<in> A \<longrightarrow> g y \<in> W)"
+            apply (rule_tac x = "ball a (d / 6)" in exI)
+            using e \<open>0 < d\<close> by fastforce
+        qed
+      next
+        case False
+        obtain N where N: "open N" "a \<in> N"
+                   and finN: "finite {U \<in> \<C>. \<exists>a\<in>N. H U a \<noteq> 0}"
+          using Hfin False \<open>a \<in> U\<close> by auto
+        have oUS: "openin (subtopology euclidean U) (U - S)"
+          using cloin by (simp add: openin_diff)
+        have HcontU: "continuous (at a within U) (H T)" if "T \<in> \<C>" for T
+          using Hcont [OF \<open>T \<in> \<C>\<close>] False  \<open>a \<in> U\<close> \<open>T \<in> \<C>\<close>
+          apply (simp add: continuous_on_eq_continuous_within continuous_within)
+          apply (rule Lim_transform_within_set)
+          using oUS
+            apply (force simp: eventually_at openin_contains_ball dist_commute dest!: bspec)+
+          done
+        show ?thesis
+        proof (rule continuous_transform_within_openin [OF _ oUS])
+          show "continuous (at a within U) (\<lambda>x. supp_setsum (\<lambda>T. H T x *\<^sub>R f (\<A> T)) \<C>)"
+          proof (rule continuous_transform_within_openin)
+            show "continuous (at a within U)
+                    (\<lambda>x. \<Sum>T\<in>{U \<in> \<C>. \<exists>x\<in>N. H U x \<noteq> 0}. H T x *\<^sub>R f (\<A> T))"
+              by (force intro: continuous_intros HcontU)+
+          next
+            show "openin (subtopology euclidean U) ((U - S) \<inter> N)"
+              using N oUS openin_trans by blast
+          next
+            show "a \<in> (U - S) \<inter> N" using False \<open>a \<in> U\<close> N by blast
+          next
+            show "\<And>x. x \<in> (U - S) \<inter> N \<Longrightarrow>
+                         (\<Sum>T \<in> {U \<in> \<C>. \<exists>x\<in>N. H U x \<noteq> 0}. H T x *\<^sub>R f (\<A> T))
+                         = supp_setsum (\<lambda>T. H T x *\<^sub>R f (\<A> T)) \<C>"
+              by (auto simp: supp_setsum_def support_def
+                       intro: setsum.mono_neutral_right [OF finN])
+          qed
+        next
+          show "a \<in> U - S" using False \<open>a \<in> U\<close> by blast
+        next
+          show "\<And>x. x \<in> U - S \<Longrightarrow> supp_setsum (\<lambda>T. H T x *\<^sub>R f (\<A> T)) \<C> = g x"
+            by (simp add: g_def)
+        qed
+      qed
+    qed
+    show "g ` U \<subseteq> C"
+      using \<open>f ` S \<subseteq> C\<close> VA
+      by (fastforce simp: g_def Hge0 intro!: convex_supp_setsum [OF \<open>convex C\<close>] H1)
+    show "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+      by (simp add: g_def)
+  qed
+qed
+
+
+corollary Tietze:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_inner"
+  assumes "continuous_on S f"
+      and "closedin (subtopology euclidean U) S"
+      and "0 \<le> B"
+      and "\<And>x. x \<in> S \<Longrightarrow> norm(f x) \<le> B"
+  obtains g where "continuous_on U g" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+                  "\<And>x. x \<in> U \<Longrightarrow> norm(g x) \<le> B"
+using assms
+by (auto simp: image_subset_iff intro: Dugundji [of "cball 0 B" U S f])
+
+corollary Tietze_closed_interval:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "continuous_on S f"
+      and "closedin (subtopology euclidean U) S"
+      and "cbox a b \<noteq> {}"
+      and "\<And>x. x \<in> S \<Longrightarrow> f x \<in> cbox a b"
+  obtains g where "continuous_on U g" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+                  "\<And>x. x \<in> U \<Longrightarrow> g x \<in> cbox a b"
+apply (rule Dugundji [of "cbox a b" U S f])
+using assms by auto
+
+corollary Tietze_closed_interval_1:
+  fixes f :: "'a::euclidean_space \<Rightarrow> real"
+  assumes "continuous_on S f"
+      and "closedin (subtopology euclidean U) S"
+      and "a \<le> b"
+      and "\<And>x. x \<in> S \<Longrightarrow> f x \<in> cbox a b"
+  obtains g where "continuous_on U g" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+                  "\<And>x. x \<in> U \<Longrightarrow> g x \<in> cbox a b"
+apply (rule Dugundji [of "cbox a b" U S f])
+using assms by (auto simp: image_subset_iff)
+
+corollary Tietze_open_interval:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes "continuous_on S f"
+      and "closedin (subtopology euclidean U) S"
+      and "box a b \<noteq> {}"
+      and "\<And>x. x \<in> S \<Longrightarrow> f x \<in> box a b"
+  obtains g where "continuous_on U g" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+                  "\<And>x. x \<in> U \<Longrightarrow> g x \<in> box a b"
+apply (rule Dugundji [of "box a b" U S f])
+using assms by auto
+
+corollary Tietze_open_interval_1:
+  fixes f :: "'a::euclidean_space \<Rightarrow> real"
+  assumes "continuous_on S f"
+      and "closedin (subtopology euclidean U) S"
+      and "a < b"
+      and no: "\<And>x. x \<in> S \<Longrightarrow> f x \<in> box a b"
+  obtains g where "continuous_on U g" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+                  "\<And>x. x \<in> U \<Longrightarrow> g x \<in> box a b"
+apply (rule Dugundji [of "box a b" U S f])
+using assms by (auto simp: image_subset_iff)
+
+corollary Tietze_unbounded:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_inner"
+  assumes "continuous_on S f"
+      and "closedin (subtopology euclidean U) S"
+  obtains g where "continuous_on U g" "\<And>x. x \<in> S \<Longrightarrow> g x = f x"
+apply (rule Dugundji [of UNIV U S f])
+using assms by auto
+
+end