src/HOL/SupInf.thy
changeset 33269 3b7e2dbbd684
child 33271 7be66dee1a5a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/SupInf.thy	Tue Oct 27 12:59:57 2009 +0000
@@ -0,0 +1,467 @@
+(*  Author: Amine Chaieb and L C Paulson, University of Cambridge *)
+
+header {*Sup and Inf Operators on Sets of Reals.*}
+
+theory SupInf
+imports RComplete
+begin
+
+lemma minus_max_eq_min:
+  fixes x :: "'a::{lordered_ab_group_add, linorder}"
+  shows "- (max x y) = min (-x) (-y)"
+by (metis le_imp_neg_le linorder_linear min_max.inf_absorb2 min_max.le_iff_inf min_max.le_iff_sup min_max.sup_absorb1)
+
+lemma minus_min_eq_max:
+  fixes x :: "'a::{lordered_ab_group_add, linorder}"
+  shows "- (min x y) = max (-x) (-y)"
+by (metis minus_max_eq_min minus_minus)
+
+lemma minus_Max_eq_Min [simp]:
+  fixes S :: "'a::{lordered_ab_group_add, linorder} set"
+  shows "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> - (Max S) = Min (uminus ` S)"
+proof (induct S rule: finite_ne_induct)
+  case (singleton x)
+  thus ?case by simp
+next
+  case (insert x S)
+  thus ?case by (simp add: minus_max_eq_min) 
+qed
+
+lemma minus_Min_eq_Max [simp]:
+  fixes S :: "'a::{lordered_ab_group_add, linorder} set"
+  shows "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> - (Min S) = Max (uminus ` S)"
+proof (induct S rule: finite_ne_induct)
+  case (singleton x)
+  thus ?case by simp
+next
+  case (insert x S)
+  thus ?case by (simp add: minus_min_eq_max) 
+qed
+
+instantiation real :: Sup 
+begin
+definition
+  Sup_real_def [code del]: "Sup X == (LEAST z::real. \<forall>x\<in>X. x\<le>z)"
+
+instance ..
+end
+
+instantiation real :: Inf 
+begin
+definition
+  Inf_real_def [code del]: "Inf (X::real set) == - (Sup (uminus ` X))"
+
+instance ..
+end
+
+subsection{*Supremum of a set of reals*}
+
+lemma Sup_upper [intro]: (*REAL_SUP_UBOUND in HOL4*)
+  fixes x :: real
+  assumes x: "x \<in> X"
+      and z: "!!x. x \<in> X \<Longrightarrow> x \<le> z"
+  shows "x \<le> Sup X"
+proof (auto simp add: Sup_real_def) 
+  from reals_complete2
+  obtain s where s: "(\<forall>y\<in>X. y \<le> s) & (\<forall>z. ((\<forall>y\<in>X. y \<le> z) --> s \<le> z))"
+    by (blast intro: x z)
+  hence "x \<le> s"
+    by (blast intro: x z)
+  also with s have "... = (LEAST z. \<forall>x\<in>X. x \<le> z)"
+    by (fast intro: Least_equality [symmetric])  
+  finally show "x \<le> (LEAST z. \<forall>x\<in>X. x \<le> z)" .
+qed
+
+lemma Sup_least [intro]: (*REAL_IMP_SUP_LE in HOL4*)
+  fixes z :: real
+  assumes x: "X \<noteq> {}"
+      and z: "\<And>x. x \<in> X \<Longrightarrow> x \<le> z"
+  shows "Sup X \<le> z"
+proof (auto simp add: Sup_real_def) 
+  from reals_complete2 x
+  obtain s where s: "(\<forall>y\<in>X. y \<le> s) & (\<forall>z. ((\<forall>y\<in>X. y \<le> z) --> s \<le> z))"
+    by (blast intro: z)
+  hence "(LEAST z. \<forall>x\<in>X. x \<le> z) = s"
+    by (best intro: Least_equality)  
+  also with s z have "... \<le> z"
+    by blast
+  finally show "(LEAST z. \<forall>x\<in>X. x \<le> z) \<le> z" .
+qed
+
+lemma Sup_singleton [simp]: "Sup {x::real} = x"
+  by (force intro: Least_equality simp add: Sup_real_def)
+ 
+lemma Sup_eq_maximum: (*REAL_SUP_MAX in HOL4*)
+  fixes z :: real
+  assumes X: "z \<in> X" and z: "!!x. x \<in> X \<Longrightarrow> x \<le> z"
+  shows  "Sup X = z"
+  by (force intro: Least_equality X z simp add: Sup_real_def)
+ 
+lemma Sup_upper2: (*REAL_IMP_LE_SUP in HOL4*)
+  fixes x :: real
+  shows "x \<in> X \<Longrightarrow> y \<le> x \<Longrightarrow> (!!x. x \<in> X \<Longrightarrow> x \<le> z) \<Longrightarrow> y \<le> Sup X"
+  by (metis Sup_upper real_le_trans)
+
+lemma Sup_real_iff : (*REAL_SUP_LE in HOL4*)
+  fixes z :: real
+  shows "X ~= {} ==> (!!x. x \<in> X ==> x \<le> z) ==> (\<exists>x\<in>X. y<x) <-> y < Sup X"
+  by (metis Sup_least Sup_upper linorder_not_le le_less_trans)
+
+lemma Sup_eq:
+  fixes a :: real
+  shows "(!!x. x \<in> X \<Longrightarrow> x \<le> a) 
+        \<Longrightarrow> (!!y. (!!x. x \<in> X \<Longrightarrow> x \<le> y) \<Longrightarrow> a \<le> y) \<Longrightarrow> Sup X = a"
+  by (metis Sup_least Sup_upper add_le_cancel_left diff_add_cancel insert_absorb
+        insert_not_empty real_le_anti_sym)
+
+lemma Sup_le:
+  fixes S :: "real set"
+  shows "S \<noteq> {} \<Longrightarrow> S *<= b \<Longrightarrow> Sup S \<le> b"
+by (metis SupInf.Sup_least setle_def)
+
+lemma Sup_upper_EX: 
+  fixes x :: real
+  shows "x \<in> X \<Longrightarrow> \<exists>z. \<forall>x. x \<in> X \<longrightarrow> x \<le> z \<Longrightarrow>  x \<le> Sup X"
+  by blast
+
+lemma Sup_insert_nonempty: 
+  fixes x :: real
+  assumes x: "x \<in> X"
+      and z: "!!x. x \<in> X \<Longrightarrow> x \<le> z"
+  shows "Sup (insert a X) = max a (Sup X)"
+proof (cases "Sup X \<le> a")
+  case True
+  thus ?thesis
+    apply (simp add: max_def) 
+    apply (rule Sup_eq_maximum)
+    apply (metis insertCI)
+    apply (metis Sup_upper insertE le_iff_sup real_le_linear real_le_trans sup_absorb1 z)     
+    done
+next
+  case False
+  hence 1:"a < Sup X" by simp
+  have "Sup X \<le> Sup (insert a X)"
+    apply (rule Sup_least)
+    apply (metis empty_psubset_nonempty psubset_eq x)
+    apply (rule Sup_upper_EX) 
+    apply blast
+    apply (metis insert_iff real_le_linear real_le_refl real_le_trans z)
+    done
+  moreover 
+  have "Sup (insert a X) \<le> Sup X"
+    apply (rule Sup_least)
+    apply blast
+    apply (metis False Sup_upper insertE real_le_linear z) 
+    done
+  ultimately have "Sup (insert a X) = Sup X"
+    by (blast intro:  antisym )
+  thus ?thesis
+    by (metis 1 min_max.le_iff_sup real_less_def)
+qed
+
+lemma Sup_insert_if: 
+  fixes X :: "real set"
+  assumes z: "!!x. x \<in> X \<Longrightarrow> x \<le> z"
+  shows "Sup (insert a X) = (if X={} then a else max a (Sup X))"
+by auto (metis Sup_insert_nonempty z) 
+
+lemma Sup: 
+  fixes S :: "real set"
+  shows "S \<noteq> {} \<Longrightarrow> (\<exists>b. S *<= b) \<Longrightarrow> isLub UNIV S (Sup S)"
+by  (auto simp add: isLub_def setle_def leastP_def isUb_def intro!: setgeI) 
+
+lemma Sup_finite_Max: 
+  fixes S :: "real set"
+  assumes fS: "finite S" and Se: "S \<noteq> {}"
+  shows "Sup S = Max S"
+using fS Se
+proof-
+  let ?m = "Max S"
+  from Max_ge[OF fS] have Sm: "\<forall> x\<in> S. x \<le> ?m" by metis
+  with Sup[OF Se] have lub: "isLub UNIV S (Sup S)" by (metis setle_def)
+  from Max_in[OF fS Se] lub have mrS: "?m \<le> Sup S"
+    by (auto simp add: isLub_def leastP_def setle_def setge_def isUb_def)
+  moreover
+  have "Sup S \<le> ?m" using Sm lub
+    by (auto simp add: isLub_def leastP_def isUb_def setle_def setge_def)
+  ultimately  show ?thesis by arith
+qed
+
+lemma Sup_finite_in:
+  fixes S :: "real set"
+  assumes fS: "finite S" and Se: "S \<noteq> {}"
+  shows "Sup S \<in> S"
+  using Sup_finite_Max[OF fS Se] Max_in[OF fS Se] by metis
+
+lemma Sup_finite_ge_iff: 
+  fixes S :: "real set"
+  assumes fS: "finite S" and Se: "S \<noteq> {}"
+  shows "a \<le> Sup S \<longleftrightarrow> (\<exists> x \<in> S. a \<le> x)"
+by (metis Max_ge Se Sup_finite_Max Sup_finite_in fS linorder_not_le less_le_trans)
+
+lemma Sup_finite_le_iff: 
+  fixes S :: "real set"
+  assumes fS: "finite S" and Se: "S \<noteq> {}"
+  shows "a \<ge> Sup S \<longleftrightarrow> (\<forall> x \<in> S. a \<ge> x)"
+by (metis Max_ge Se Sup_finite_Max Sup_finite_in fS le_iff_sup real_le_trans) 
+
+lemma Sup_finite_gt_iff: 
+  fixes S :: "real set"
+  assumes fS: "finite S" and Se: "S \<noteq> {}"
+  shows "a < Sup S \<longleftrightarrow> (\<exists> x \<in> S. a < x)"
+by (metis Se Sup_finite_le_iff fS linorder_not_less)
+
+lemma Sup_finite_lt_iff: 
+  fixes S :: "real set"
+  assumes fS: "finite S" and Se: "S \<noteq> {}"
+  shows "a > Sup S \<longleftrightarrow> (\<forall> x \<in> S. a > x)"
+by (metis Se Sup_finite_ge_iff fS linorder_not_less)
+
+lemma Sup_unique:
+  fixes S :: "real set"
+  shows "S *<= b \<Longrightarrow> (\<forall>b' < b. \<exists>x \<in> S. b' < x) \<Longrightarrow> Sup S = b"
+unfolding setle_def
+apply (rule Sup_eq, auto) 
+apply (metis linorder_not_less) 
+done
+
+lemma Sup_abs_le:
+  fixes S :: "real set"
+  shows "S \<noteq> {} \<Longrightarrow> (\<forall>x\<in>S. \<bar>x\<bar> \<le> a) \<Longrightarrow> \<bar>Sup S\<bar> \<le> a"
+by (auto simp add: abs_le_interval_iff) (metis Sup_upper2) 
+
+lemma Sup_bounds:
+  fixes S :: "real set"
+  assumes Se: "S \<noteq> {}" and l: "a <=* S" and u: "S *<= b"
+  shows "a \<le> Sup S \<and> Sup S \<le> b"
+proof-
+  from Sup[OF Se] u have lub: "isLub UNIV S (Sup S)" by blast
+  hence b: "Sup S \<le> b" using u 
+    by (auto simp add: isLub_def leastP_def setle_def setge_def isUb_def) 
+  from Se obtain y where y: "y \<in> S" by blast
+  from lub l have "a \<le> Sup S"
+    by (auto simp add: isLub_def leastP_def setle_def setge_def isUb_def)
+       (metis le_iff_sup le_sup_iff y)
+  with b show ?thesis by blast
+qed
+
+lemma Sup_asclose: 
+  fixes S :: "real set"
+  assumes S:"S \<noteq> {}" and b: "\<forall>x\<in>S. \<bar>x - l\<bar> \<le> e" shows "\<bar>Sup S - l\<bar> \<le> e"
+proof-
+  have th: "\<And>(x::real) l e. \<bar>x - l\<bar> \<le> e \<longleftrightarrow> l - e \<le> x \<and> x \<le> l + e" by arith
+  thus ?thesis using S b Sup_bounds[of S "l - e" "l+e"] unfolding th
+    by  (auto simp add: setge_def setle_def)
+qed
+
+
+subsection{*Infimum of a set of reals*}
+
+lemma Inf_lower [intro]: 
+  fixes z :: real
+  assumes x: "x \<in> X"
+      and z: "!!x. x \<in> X \<Longrightarrow> z \<le> x"
+  shows "Inf X \<le> x"
+proof -
+  have "-x \<le> Sup (uminus ` X)"
+    by (rule Sup_upper [where z = "-z"]) (auto simp add: image_iff x z)
+  thus ?thesis 
+    by (auto simp add: Inf_real_def)
+qed
+
+lemma Inf_greatest [intro]: 
+  fixes z :: real
+  assumes x: "X \<noteq> {}"
+      and z: "\<And>x. x \<in> X \<Longrightarrow> z \<le> x"
+  shows "z \<le> Inf X"
+proof -
+  have "Sup (uminus ` X) \<le> -z" using x z by (force intro: Sup_least)
+  hence "z \<le> - Sup (uminus ` X)"
+    by simp
+  thus ?thesis 
+    by (auto simp add: Inf_real_def)
+qed
+
+lemma Inf_singleton [simp]: "Inf {x::real} = x"
+  by (simp add: Inf_real_def) 
+ 
+lemma Inf_eq_minimum: (*REAL_INF_MIN in HOL4*)
+  fixes z :: real
+  assumes x: "z \<in> X" and z: "!!x. x \<in> X \<Longrightarrow> z \<le> x"
+  shows  "Inf X = z"
+proof -
+  have "Sup (uminus ` X) = -z" using x z
+    by (force intro: Sup_eq_maximum x z)
+  thus ?thesis
+    by (simp add: Inf_real_def) 
+qed
+ 
+lemma Inf_lower2:
+  fixes x :: real
+  shows "x \<in> X \<Longrightarrow> x \<le> y \<Longrightarrow> (!!x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> Inf X \<le> y"
+  by (metis Inf_lower real_le_trans)
+
+lemma Inf_real_iff:
+  fixes z :: real
+  shows "X \<noteq> {} \<Longrightarrow> (!!x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> (\<exists>x\<in>X. x<y) \<longleftrightarrow> Inf X < y"
+  by (metis Inf_greatest Inf_lower less_le_not_le real_le_linear 
+            order_less_le_trans)
+
+lemma Inf_eq:
+  fixes a :: real
+  shows "(!!x. x \<in> X \<Longrightarrow> a \<le> x) \<Longrightarrow> (!!y. (!!x. x \<in> X \<Longrightarrow> y \<le> x) \<Longrightarrow> y \<le> a) \<Longrightarrow> Inf X = a"
+  by (metis Inf_greatest Inf_lower add_le_cancel_left diff_add_cancel
+        insert_absorb insert_not_empty real_le_anti_sym)
+
+lemma Inf_ge: 
+  fixes S :: "real set"
+  shows "S \<noteq> {} \<Longrightarrow> b <=* S \<Longrightarrow> Inf S \<ge> b"
+by (metis SupInf.Inf_greatest setge_def)
+
+lemma Inf_lower_EX: 
+  fixes x :: real
+  shows "x \<in> X \<Longrightarrow> \<exists>z. \<forall>x. x \<in> X \<longrightarrow> z \<le> x \<Longrightarrow> Inf X \<le> x"
+  by blast
+
+lemma Inf_insert_nonempty: 
+  fixes x :: real
+  assumes x: "x \<in> X"
+      and z: "!!x. x \<in> X \<Longrightarrow> z \<le> x"
+  shows "Inf (insert a X) = min a (Inf X)"
+proof (cases "a \<le> Inf X")
+  case True
+  thus ?thesis
+    by (simp add: min_def)
+       (blast intro: Inf_eq_minimum Inf_lower real_le_refl real_le_trans z) 
+next
+  case False
+  hence 1:"Inf X < a" by simp
+  have "Inf (insert a X) \<le> Inf X"
+    apply (rule Inf_greatest)
+    apply (metis empty_psubset_nonempty psubset_eq x)
+    apply (rule Inf_lower_EX) 
+    apply (blast intro: elim:) 
+    apply (metis insert_iff real_le_linear real_le_refl real_le_trans z)
+    done
+  moreover 
+  have "Inf X \<le> Inf (insert a X)"
+    apply (rule Inf_greatest)
+    apply blast
+    apply (metis False Inf_lower insertE real_le_linear z) 
+    done
+  ultimately have "Inf (insert a X) = Inf X"
+    by (blast intro:  antisym )
+  thus ?thesis
+    by (metis False min_max.inf_absorb2 real_le_linear)
+qed
+
+lemma Inf_insert_if: 
+  fixes X :: "real set"
+  assumes z:  "!!x. x \<in> X \<Longrightarrow> z \<le> x"
+  shows "Inf (insert a X) = (if X={} then a else min a (Inf X))"
+by auto (metis Inf_insert_nonempty z) 
+
+text{*We could prove the analogous result for the supremum, and also generalise it to the union operator.*}
+lemma Inf_binary:
+  "Inf{a, b::real} = min a b"
+  by (subst Inf_insert_nonempty, auto)
+
+lemma Inf_greater:
+  fixes z :: real
+  shows "X \<noteq> {} \<Longrightarrow>  Inf X < z \<Longrightarrow> \<exists>x \<in> X. x < z"
+  by (metis Inf_real_iff mem_def not_leE)
+
+lemma Inf_close:
+  fixes e :: real
+  shows "X \<noteq> {} \<Longrightarrow> 0 < e \<Longrightarrow> \<exists>x \<in> X. x < Inf X + e"
+  by (metis add_strict_increasing comm_monoid_add.mult_commute Inf_greater linorder_not_le pos_add_strict)
+
+lemma Inf_finite_Min:
+  fixes S :: "real set"
+  shows "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> Inf S = Min S"
+by (simp add: Inf_real_def Sup_finite_Max image_image) 
+
+lemma Inf_finite_in: 
+  fixes S :: "real set"
+  assumes fS: "finite S" and Se: "S \<noteq> {}"
+  shows "Inf S \<in> S"
+  using Inf_finite_Min[OF fS Se] Min_in[OF fS Se] by metis
+
+lemma Inf_finite_ge_iff: 
+  fixes S :: "real set"
+  shows "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> a \<le> Inf S \<longleftrightarrow> (\<forall> x \<in> S. a \<le> x)"
+by (metis Inf_finite_Min Inf_finite_in Min_le real_le_trans)
+
+lemma Inf_finite_le_iff:
+  fixes S :: "real set"
+  shows "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> a \<ge> Inf S \<longleftrightarrow> (\<exists> x \<in> S. a \<ge> x)"
+by (metis Inf_finite_Min Inf_finite_ge_iff Inf_finite_in Min_le
+          real_le_anti_sym real_le_linear)
+
+lemma Inf_finite_gt_iff: 
+  fixes S :: "real set"
+  shows "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> a < Inf S \<longleftrightarrow> (\<forall> x \<in> S. a < x)"
+by (metis Inf_finite_le_iff linorder_not_less)
+
+lemma Inf_finite_lt_iff: 
+  fixes S :: "real set"
+  shows "finite S \<Longrightarrow> S \<noteq> {} \<Longrightarrow> a > Inf S \<longleftrightarrow> (\<exists> x \<in> S. a > x)"
+by (metis Inf_finite_ge_iff linorder_not_less)
+
+lemma Inf_unique:
+  fixes S :: "real set"
+  shows "b <=* S \<Longrightarrow> (\<forall>b' > b. \<exists>x \<in> S. b' > x) \<Longrightarrow> Inf S = b"
+unfolding setge_def
+apply (rule Inf_eq, auto) 
+apply (metis less_le_not_le linorder_not_less) 
+done
+
+lemma Inf_abs_ge:
+  fixes S :: "real set"
+  shows "S \<noteq> {} \<Longrightarrow> (\<forall>x\<in>S. \<bar>x\<bar> \<le> a) \<Longrightarrow> \<bar>Inf S\<bar> \<le> a"
+by (simp add: Inf_real_def) (rule Sup_abs_le, auto) 
+
+lemma Inf_asclose:
+  fixes S :: "real set"
+  assumes S:"S \<noteq> {}" and b: "\<forall>x\<in>S. \<bar>x - l\<bar> \<le> e" shows "\<bar>Inf S - l\<bar> \<le> e"
+proof -
+  have "\<bar>- Sup (uminus ` S) - l\<bar> =  \<bar>Sup (uminus ` S) - (-l)\<bar>"
+    by auto
+  also have "... \<le> e" 
+    apply (rule Sup_asclose) 
+    apply (auto simp add: S)
+    apply (metis abs_minus_add_cancel b comm_monoid_add.mult_commute real_diff_def) 
+    done
+  finally have "\<bar>- Sup (uminus ` S) - l\<bar> \<le> e" .
+  thus ?thesis
+    by (simp add: Inf_real_def)
+qed
+
+subsection{*Relate max and min to sup and inf.*}
+
+lemma real_max_Sup:
+  fixes x :: real
+  shows "max x y = Sup {x,y}"
+proof-
+  have f: "finite {x, y}" "{x,y} \<noteq> {}"  by simp_all
+  from Sup_finite_le_iff[OF f, of "max x y"] have "Sup {x,y} \<le> max x y" by simp
+  moreover
+  have "max x y \<le> Sup {x,y}" using Sup_finite_ge_iff[OF f, of "max x y"]
+    by (simp add: linorder_linear)
+  ultimately show ?thesis by arith
+qed
+
+lemma real_min_Inf: 
+  fixes x :: real
+  shows "min x y = Inf {x,y}"
+proof-
+  have f: "finite {x, y}" "{x,y} \<noteq> {}"  by simp_all
+  from Inf_finite_le_iff[OF f, of "min x y"] have "Inf {x,y} \<le> min x y"
+    by (simp add: linorder_linear)
+  moreover
+  have "min x y \<le> Inf {x,y}" using Inf_finite_ge_iff[OF f, of "min x y"]
+    by simp
+  ultimately show ?thesis by arith
+qed
+
+end