--- a/src/HOL/Library/Ring_and_Field.thy Fri Oct 05 21:50:37 2001 +0200
+++ b/src/HOL/Library/Ring_and_Field.thy Fri Oct 05 21:52:39 2001 +0200
@@ -18,11 +18,11 @@
left_zero [simp]: "0 + a = a"
left_minus [simp]: "- a + a = 0"
diff_minus: "a - b = a + (-b)"
- zero_number: "0 = #0"
+ zero_number: "0 = Numeral0"
mult_assoc: "(a * b) * c = a * (b * c)"
mult_commute: "a * b = b * a"
- left_one [simp]: "#1 * a = a"
+ left_one [simp]: "Numeral1 * a = a"
left_distrib: "(a + b) * c = a * c + b * c"
@@ -32,7 +32,7 @@
abs_if: "\<bar>a\<bar> = (if a < 0 then -a else a)"
axclass field \<subseteq> ring, inverse
- left_inverse [simp]: "a \<noteq> 0 ==> inverse a * a = #1"
+ left_inverse [simp]: "a \<noteq> 0 ==> inverse a * a = Numeral1"
divide_inverse: "b \<noteq> 0 ==> a / b = a * inverse b"
axclass ordered_field \<subseteq> ordered_ring, field
@@ -86,10 +86,10 @@
subsubsection {* Derived rules for multiplication *}
-lemma right_one [simp]: "a = a * (#1::'a::field)"
+lemma right_one [simp]: "a = a * (Numeral1::'a::field)"
proof -
- have "a = #1 * a" by simp
- also have "... = a * #1" by (simp add: mult_commute)
+ have "a = Numeral1 * a" by simp
+ also have "... = a * Numeral1" by (simp add: mult_commute)
finally show ?thesis .
qed
@@ -102,28 +102,28 @@
theorems ring_mult_ac = mult_assoc mult_commute mult_left_commute
-lemma right_inverse [simp]: "a \<noteq> 0 ==> a * inverse (a::'a::field) = #1"
+lemma right_inverse [simp]: "a \<noteq> 0 ==> a * inverse (a::'a::field) = Numeral1"
proof -
have "a * inverse a = inverse a * a" by (simp add: ring_mult_ac)
also assume "a \<noteq> 0"
- hence "inverse a * a = #1" by simp
+ hence "inverse a * a = Numeral1" by simp
finally show ?thesis .
qed
-lemma right_inverse_eq: "b \<noteq> 0 ==> (a / b = #1) = (a = (b::'a::field))"
+lemma right_inverse_eq: "b \<noteq> 0 ==> (a / b = Numeral1) = (a = (b::'a::field))"
proof
assume neq: "b \<noteq> 0"
{
hence "a = (a / b) * b" by (simp add: divide_inverse ring_mult_ac)
- also assume "a / b = #1"
+ also assume "a / b = Numeral1"
finally show "a = b" by simp
next
assume "a = b"
- with neq show "a / b = #1" by (simp add: divide_inverse)
+ with neq show "a / b = Numeral1" by (simp add: divide_inverse)
}
qed
-lemma divide_self [simp]: "a \<noteq> 0 ==> a / (a::'a::field) = #1"
+lemma divide_self [simp]: "a \<noteq> 0 ==> a / (a::'a::field) = Numeral1"
by (simp add: divide_inverse)