--- a/src/HOL/Lex/RegExp2NAe.ML Fri Mar 05 15:30:49 2004 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,630 +0,0 @@
-(* Title: HOL/Lex/RegExp2NAe.ML
- ID: $Id$
- Author: Tobias Nipkow
- Copyright 1998 TUM
-*)
-
-(******************************************************)
-(* atom *)
-(******************************************************)
-
-Goalw [atom_def] "(fin (atom a) q) = (q = [False])";
-by (Simp_tac 1);
-qed "fin_atom";
-
-Goalw [atom_def] "start (atom a) = [True]";
-by (Simp_tac 1);
-qed "start_atom";
-
-(* Use {x. False} = {}? *)
-
-Goalw [atom_def,thm"step_def"]
- "eps(atom a) = {}";
-by (Simp_tac 1);
-qed "eps_atom";
-Addsimps [eps_atom];
-
-Goalw [atom_def,thm"step_def"]
- "(p,q) : step (atom a) (Some b) = (p=[True] & q=[False] & b=a)";
-by (Simp_tac 1);
-qed "in_step_atom_Some";
-Addsimps [in_step_atom_Some];
-
-Goal "([False],[False]) : steps (atom a) w = (w = [])";
-by (induct_tac "w" 1);
- by (Simp_tac 1);
-by (asm_simp_tac (simpset() addsimps [rel_comp_def]) 1);
-qed "False_False_in_steps_atom";
-
-Goal "(start (atom a), [False]) : steps (atom a) w = (w = [a])";
-by (induct_tac "w" 1);
- by (asm_simp_tac (simpset() addsimps [start_atom,thm"rtrancl_empty"]) 1);
-by (asm_full_simp_tac (simpset()
- addsimps [False_False_in_steps_atom,rel_comp_def,start_atom]) 1);
-qed "start_fin_in_steps_atom";
-
-Goal "accepts (atom a) w = (w = [a])";
-by (simp_tac(simpset() addsimps
- [thm"accepts_def",start_fin_in_steps_atom,fin_atom]) 1);
-qed "accepts_atom";
-
-
-(******************************************************)
-(* or *)
-(******************************************************)
-
-(***** True/False ueber fin anheben *****)
-
-Goalw [or_def]
- "!L R. fin (or L R) (True#p) = fin L p";
-by (Simp_tac 1);
-qed_spec_mp "fin_or_True";
-
-Goalw [or_def]
- "!L R. fin (or L R) (False#p) = fin R p";
-by (Simp_tac 1);
-qed_spec_mp "fin_or_False";
-
-AddIffs [fin_or_True,fin_or_False];
-
-(***** True/False ueber step anheben *****)
-
-Goalw [or_def,thm"step_def"]
-"!L R. (True#p,q) : step (or L R) a = (? r. q = True#r & (p,r) : step L a)";
-by (Simp_tac 1);
-by (Blast_tac 1);
-qed_spec_mp "True_in_step_or";
-
-Goalw [or_def,thm"step_def"]
-"!L R. (False#p,q) : step (or L R) a = (? r. q = False#r & (p,r) : step R a)";
-by (Simp_tac 1);
-by (Blast_tac 1);
-qed_spec_mp "False_in_step_or";
-
-AddIffs [True_in_step_or,False_in_step_or];
-
-(***** True/False ueber epsclosure anheben *****)
-
-Goal
- "(tp,tq) : (eps(or L R))^* ==> \
-\ !p. tp = True#p --> (? q. (p,q) : (eps L)^* & tq = True#q)";
-by (etac rtrancl_induct 1);
- by (Blast_tac 1);
-by (Clarify_tac 1);
-by (Asm_full_simp_tac 1);
-by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1);
-val lemma1a = result();
-
-Goal
- "(tp,tq) : (eps(or L R))^* ==> \
-\ !p. tp = False#p --> (? q. (p,q) : (eps R)^* & tq = False#q)";
-by (etac rtrancl_induct 1);
- by (Blast_tac 1);
-by (Clarify_tac 1);
-by (Asm_full_simp_tac 1);
-by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1);
-val lemma1b = result();
-
-Goal
- "(p,q) : (eps L)^* ==> (True#p, True#q) : (eps(or L R))^*";
-by (etac rtrancl_induct 1);
- by (Blast_tac 1);
-by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1);
-val lemma2a = result();
-
-Goal
- "(p,q) : (eps R)^* ==> (False#p, False#q) : (eps(or L R))^*";
-by (etac rtrancl_induct 1);
- by (Blast_tac 1);
-by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1);
-val lemma2b = result();
-
-Goal
- "(True#p,q) : (eps(or L R))^* = (? r. q = True#r & (p,r) : (eps L)^*)";
-by (blast_tac (claset() addDs [lemma1a,lemma2a]) 1);
-qed "True_epsclosure_or";
-
-Goal
- "(False#p,q) : (eps(or L R))^* = (? r. q = False#r & (p,r) : (eps R)^*)";
-by (blast_tac (claset() addDs [lemma1b,lemma2b]) 1);
-qed "False_epsclosure_or";
-
-AddIffs [True_epsclosure_or,False_epsclosure_or];
-
-(***** True/False ueber steps anheben *****)
-
-Goal
- "!p. (True#p,q):steps (or L R) w = (? r. q = True # r & (p,r):steps L w)";
-by (induct_tac "w" 1);
- by Auto_tac;
-by (Force_tac 1);
-qed_spec_mp "lift_True_over_steps_or";
-
-Goal
- "!p. (False#p,q):steps (or L R) w = (? r. q = False#r & (p,r):steps R w)";
-by (induct_tac "w" 1);
- by Auto_tac;
-by (Force_tac 1);
-qed_spec_mp "lift_False_over_steps_or";
-
-AddIffs [lift_True_over_steps_or,lift_False_over_steps_or];
-
-
-(***** Epsilonhuelle des Startzustands *****)
-
-Goal
- "R^* = Id Un (R^* O R)";
-by (rtac set_ext 1);
-by (split_all_tac 1);
-by (rtac iffI 1);
- by (etac rtrancl_induct 1);
- by (Blast_tac 1);
- by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1);
-by (blast_tac (claset() addIs [converse_rtrancl_into_rtrancl]) 1);
-qed "unfold_rtrancl2";
-
-Goal
- "(p,q) : R^* = (q = p | (? r. (p,r) : R & (r,q) : R^*))";
-by (rtac (unfold_rtrancl2 RS equalityE) 1);
-by (Blast_tac 1);
-qed "in_unfold_rtrancl2";
-
-val epsclosure_start_step_or =
- read_instantiate [("p","start(or L R)")] in_unfold_rtrancl2;
-AddIffs [epsclosure_start_step_or];
-
-Goalw [or_def,thm"step_def"]
- "!L R. (start(or L R),q) : eps(or L R) = \
-\ (q = True#start L | q = False#start R)";
-by (Simp_tac 1);
-qed_spec_mp "start_eps_or";
-AddIffs [start_eps_or];
-
-Goalw [or_def,thm"step_def"]
- "!L R. (start(or L R),q) ~: step (or L R) (Some a)";
-by (Simp_tac 1);
-qed_spec_mp "not_start_step_or_Some";
-AddIffs [not_start_step_or_Some];
-
-Goal
- "(start(or L R), q) : steps (or L R) w = \
-\ ( (w = [] & q = start(or L R)) | \
-\ (? p. q = True # p & (start L,p) : steps L w | \
-\ q = False # p & (start R,p) : steps R w) )";
-by (case_tac "w" 1);
- by (Asm_simp_tac 1);
- by (Blast_tac 1);
-by (Asm_simp_tac 1);
-by (Blast_tac 1);
-qed "steps_or";
-
-Goalw [or_def]
- "!L R. ~ fin (or L R) (start(or L R))";
-by (Simp_tac 1);
-qed_spec_mp "start_or_not_final";
-AddIffs [start_or_not_final];
-
-Goalw [thm"accepts_def"]
- "accepts (or L R) w = (accepts L w | accepts R w)";
-by (simp_tac (simpset() addsimps [steps_or]) 1);
-by Auto_tac;
-qed "accepts_or";
-
-
-(******************************************************)
-(* conc *)
-(******************************************************)
-
-(** True/False in fin **)
-
-Goalw [conc_def]
- "!L R. fin (conc L R) (True#p) = False";
-by (Simp_tac 1);
-qed_spec_mp "fin_conc_True";
-
-Goalw [conc_def]
- "!L R. fin (conc L R) (False#p) = fin R p";
-by (Simp_tac 1);
-qed "fin_conc_False";
-
-AddIffs [fin_conc_True,fin_conc_False];
-
-(** True/False in step **)
-
-Goalw [conc_def,thm"step_def"]
- "!L R. (True#p,q) : step (conc L R) a = \
-\ ((? r. q=True#r & (p,r): step L a) | \
-\ (fin L p & a=None & q=False#start R))";
-by (Simp_tac 1);
-by (Blast_tac 1);
-qed_spec_mp "True_step_conc";
-
-Goalw [conc_def,thm"step_def"]
- "!L R. (False#p,q) : step (conc L R) a = \
-\ (? r. q = False#r & (p,r) : step R a)";
-by (Simp_tac 1);
-by (Blast_tac 1);
-qed_spec_mp "False_step_conc";
-
-AddIffs [True_step_conc, False_step_conc];
-
-(** False in epsclosure **)
-
-Goal
- "(tp,tq) : (eps(conc L R))^* ==> \
-\ !p. tp = False#p --> (? q. (p,q) : (eps R)^* & tq = False#q)";
-by (etac rtrancl_induct 1);
- by (Blast_tac 1);
-by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1);
-qed "lemma1b";
-
-Goal
- "(p,q) : (eps R)^* ==> (False#p, False#q) : (eps(conc L R))^*";
-by (etac rtrancl_induct 1);
- by (Blast_tac 1);
-by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1);
-val lemma2b = result();
-
-Goal
- "((False # p, q) : (eps (conc L R))^*) = \
-\ (? r. q = False # r & (p, r) : (eps R)^*)";
-by (rtac iffI 1);
- by (blast_tac (claset() addDs [lemma1b]) 1);
-by (blast_tac (claset() addDs [lemma2b]) 1);
-qed "False_epsclosure_conc";
-AddIffs [False_epsclosure_conc];
-
-(** False in steps **)
-
-Goal
- "!p. (False#p,q): steps (conc L R) w = (? r. q=False#r & (p,r): steps R w)";
-by (induct_tac "w" 1);
- by (Simp_tac 1);
-by (Simp_tac 1);
-by (Fast_tac 1); (*MUCH faster than Blast_tac*)
-qed_spec_mp "False_steps_conc";
-AddIffs [False_steps_conc];
-
-(** True in epsclosure **)
-
-Goal
- "(p,q): (eps L)^* ==> (True#p,True#q) : (eps(conc L R))^*";
-by (etac rtrancl_induct 1);
- by (Blast_tac 1);
-by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1);
-qed "True_True_eps_concI";
-
-Goal
- "!p. (p,q) : steps L w --> (True#p,True#q) : steps (conc L R) w";
-by (induct_tac "w" 1);
- by (simp_tac (simpset() addsimps [True_True_eps_concI]) 1);
-by (Simp_tac 1);
-by (blast_tac (claset() addIs [True_True_eps_concI]) 1);
-qed_spec_mp "True_True_steps_concI";
-
-Goal
- "(tp,tq) : (eps(conc L R))^* ==> \
-\ !p. tp = True#p --> \
-\ (? q. tq = True#q & (p,q) : (eps L)^*) | \
-\ (? q r. tq = False#q & (p,r):(eps L)^* & fin L r & (start R,q) : (eps R)^*)";
-by (etac rtrancl_induct 1);
- by (Blast_tac 1);
-by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1);
-val lemma1a = result();
-
-Goal
- "(p, q) : (eps L)^* ==> (True#p, True#q) : (eps(conc L R))^*";
-by (etac rtrancl_induct 1);
- by (Blast_tac 1);
-by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1);
-val lemma2a = result();
-
-Goalw [conc_def,thm"step_def"]
- "!!L R. (p,q) : step R None ==> (False#p, False#q) : step (conc L R) None";
-by (split_all_tac 1);
-by (Asm_full_simp_tac 1);
-val lemma = result();
-
-Goal
- "(p,q) : (eps R)^* ==> (False#p, False#q) : (eps(conc L R))^*";
-by (etac rtrancl_induct 1);
- by (Blast_tac 1);
-by (dtac lemma 1);
-by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1);
-val lemma2b = result();
-
-Goalw [conc_def,thm"step_def"]
- "!!L R. fin L p ==> (True#p, False#start R) : eps(conc L R)";
-by (split_all_tac 1);
-by (Asm_full_simp_tac 1);
-qed "True_False_eps_concI";
-
-Goal
- "((True#p,q) : (eps(conc L R))^*) = \
-\ ((? r. (p,r) : (eps L)^* & q = True#r) | \
-\ (? r. (p,r) : (eps L)^* & fin L r & \
-\ (? s. (start R, s) : (eps R)^* & q = False#s)))";
-by (rtac iffI 1);
- by (blast_tac (claset() addDs [lemma1a]) 1);
-by (etac disjE 1);
- by (blast_tac (claset() addIs [lemma2a]) 1);
-by (Clarify_tac 1);
-by (rtac (rtrancl_trans) 1);
-by (etac lemma2a 1);
-by (rtac converse_rtrancl_into_rtrancl 1);
-by (etac True_False_eps_concI 1);
-by (etac lemma2b 1);
-qed "True_epsclosure_conc";
-AddIffs [True_epsclosure_conc];
-
-(** True in steps **)
-
-Goal
- "!p. (True#p,q) : steps (conc L R) w --> \
-\ ((? r. (p,r) : steps L w & q = True#r) | \
-\ (? u v. w = u@v & (? r. (p,r) : steps L u & fin L r & \
-\ (? s. (start R,s) : steps R v & q = False#s))))";
-by (induct_tac "w" 1);
- by (Simp_tac 1);
-by (Simp_tac 1);
-by (clarify_tac (claset() delrules [disjCI]) 1);
- by (etac disjE 1);
- by (clarify_tac (claset() delrules [disjCI]) 1);
- by (etac disjE 1);
- by (clarify_tac (claset() delrules [disjCI]) 1);
- by (etac allE 1 THEN mp_tac 1);
- by (etac disjE 1);
- by (Blast_tac 1);
- by (rtac disjI2 1);
- by (Clarify_tac 1);
- by (Simp_tac 1);
- by (res_inst_tac[("x","a#u")] exI 1);
- by (Simp_tac 1);
- by (Blast_tac 1);
- by (Blast_tac 1);
-by (rtac disjI2 1);
-by (Clarify_tac 1);
-by (Simp_tac 1);
-by (res_inst_tac[("x","[]")] exI 1);
-by (Simp_tac 1);
-by (Blast_tac 1);
-qed_spec_mp "True_steps_concD";
-
-Goal
- "(True#p,q) : steps (conc L R) w = \
-\ ((? r. (p,r) : steps L w & q = True#r) | \
-\ (? u v. w = u@v & (? r. (p,r) : steps L u & fin L r & \
-\ (? s. (start R,s) : steps R v & q = False#s))))";
-by (blast_tac (claset() addDs [True_steps_concD]
- addIs [True_True_steps_concI,thm"in_steps_epsclosure"]) 1);
-qed "True_steps_conc";
-
-(** starting from the start **)
-
-Goalw [conc_def]
- "!L R. start(conc L R) = True#start L";
-by (Simp_tac 1);
-qed_spec_mp "start_conc";
-
-Goalw [conc_def]
- "!L R. fin(conc L R) p = (? s. p = False#s & fin R s)";
-by (simp_tac (simpset() addsplits [thm"list.split"]) 1);
-qed_spec_mp "final_conc";
-
-Goal
- "accepts (conc L R) w = (? u v. w = u@v & accepts L u & accepts R v)";
-by (simp_tac (simpset() addsimps
- [thm"accepts_def",True_steps_conc,final_conc,start_conc]) 1);
-by (Blast_tac 1);
-qed "accepts_conc";
-
-(******************************************************)
-(* star *)
-(******************************************************)
-
-Goalw [star_def,thm"step_def"]
- "!A. (True#p,q) : eps(star A) = \
-\ ( (? r. q = True#r & (p,r) : eps A) | (fin A p & q = True#start A) )";
-by (Simp_tac 1);
-by (Blast_tac 1);
-qed_spec_mp "True_in_eps_star";
-AddIffs [True_in_eps_star];
-
-Goalw [star_def,thm"step_def"]
- "!A. (p,q) : step A a --> (True#p, True#q) : step (star A) a";
-by (Simp_tac 1);
-qed_spec_mp "True_True_step_starI";
-
-Goal
- "(p,r) : (eps A)^* ==> (True#p, True#r) : (eps(star A))^*";
-by (etac rtrancl_induct 1);
- by (Blast_tac 1);
-by (blast_tac (claset() addIs [True_True_step_starI,rtrancl_into_rtrancl]) 1);
-qed_spec_mp "True_True_eps_starI";
-
-Goalw [star_def,thm"step_def"]
- "!A. fin A p --> (True#p,True#start A) : eps(star A)";
-by (Simp_tac 1);
-qed_spec_mp "True_start_eps_starI";
-
-Goal
- "(tp,s) : (eps(star A))^* ==> (! p. tp = True#p --> \
-\ (? r. ((p,r) : (eps A)^* | \
-\ (? q. (p,q) : (eps A)^* & fin A q & (start A,r) : (eps A)^*)) & \
-\ s = True#r))";
-by (etac rtrancl_induct 1);
- by (Simp_tac 1);
-by (Clarify_tac 1);
-by (Asm_full_simp_tac 1);
-by (blast_tac (claset() addIs [rtrancl_into_rtrancl]) 1);
-val lemma = result();
-
-Goal
- "((True#p,s) : (eps(star A))^*) = \
-\ (? r. ((p,r) : (eps A)^* | \
-\ (? q. (p,q) : (eps A)^* & fin A q & (start A,r) : (eps A)^*)) & \
-\ s = True#r)";
-by (rtac iffI 1);
- by (dtac lemma 1);
- by (Blast_tac 1);
-(* Why can't blast_tac do the rest? *)
-by (Clarify_tac 1);
-by (etac disjE 1);
-by (etac True_True_eps_starI 1);
-by (Clarify_tac 1);
-by (rtac rtrancl_trans 1);
-by (etac True_True_eps_starI 1);
-by (rtac rtrancl_trans 1);
-by (rtac r_into_rtrancl 1);
-by (etac True_start_eps_starI 1);
-by (etac True_True_eps_starI 1);
-qed "True_eps_star";
-AddIffs [True_eps_star];
-
-(** True in step Some **)
-
-Goalw [star_def,thm"step_def"]
- "!A. (True#p,r): step (star A) (Some a) = \
-\ (? q. (p,q): step A (Some a) & r=True#q)";
-by (Simp_tac 1);
-by (Blast_tac 1);
-qed_spec_mp "True_step_star";
-AddIffs [True_step_star];
-
-
-(** True in steps **)
-
-(* reverse list induction! Complicates matters for conc? *)
-Goal
- "!rr. (True#start A,rr) : steps (star A) w --> \
-\ (? us v. w = concat us @ v & \
-\ (!u:set us. accepts A u) & \
-\ (? r. (start A,r) : steps A v & rr = True#r))";
-by (res_inst_tac [("xs","w")] rev_induct 1);
- by (Asm_full_simp_tac 1);
- by (Clarify_tac 1);
- by (res_inst_tac [("x","[]")] exI 1);
- by (etac disjE 1);
- by (Asm_simp_tac 1);
- by (Clarify_tac 1);
- by (Asm_simp_tac 1);
-by (simp_tac (simpset() addsimps [O_assoc,thm"epsclosure_steps"]) 1);
-by (Clarify_tac 1);
-by (etac allE 1 THEN mp_tac 1);
-by (Clarify_tac 1);
-by (etac disjE 1);
- by (res_inst_tac [("x","us")] exI 1);
- by (res_inst_tac [("x","v@[x]")] exI 1);
- by (asm_simp_tac (simpset() addsimps [O_assoc,thm"epsclosure_steps"]) 1);
- by (Blast_tac 1);
-by (Clarify_tac 1);
-by (res_inst_tac [("x","us@[v@[x]]")] exI 1);
-by (res_inst_tac [("x","[]")] exI 1);
-by (asm_full_simp_tac (simpset() addsimps [thm"accepts_def"]) 1);
-by (Blast_tac 1);
-qed_spec_mp "True_start_steps_starD";
-
-Goal "!p. (p,q) : steps A w --> (True#p,True#q) : steps (star A) w";
-by (induct_tac "w" 1);
- by (Simp_tac 1);
-by (Simp_tac 1);
-by (blast_tac (claset() addIs [True_True_eps_starI,True_True_step_starI]) 1);
-qed_spec_mp "True_True_steps_starI";
-
-Goalw [thm"accepts_def"]
- "(!u : set us. accepts A u) --> \
-\ (True#start A,True#start A) : steps (star A) (concat us)";
-by (induct_tac "us" 1);
- by (Simp_tac 1);
-by (Simp_tac 1);
-by (blast_tac (claset() addIs [True_True_steps_starI,True_start_eps_starI,thm"in_epsclosure_steps"]) 1);
-qed_spec_mp "steps_star_cycle";
-
-(* Better stated directly with start(star A)? Loop in star A back to start(star A)?*)
-Goal
- "(True#start A,rr) : steps (star A) w = \
-\ (? us v. w = concat us @ v & \
-\ (!u:set us. accepts A u) & \
-\ (? r. (start A,r) : steps A v & rr = True#r))";
-by (rtac iffI 1);
- by (etac True_start_steps_starD 1);
-by (Clarify_tac 1);
-by (Asm_simp_tac 1);
-by (blast_tac (claset() addIs [True_True_steps_starI,steps_star_cycle]) 1);
-qed "True_start_steps_star";
-
-(** the start state **)
-
-Goalw [star_def,thm"step_def"]
- "!A. (start(star A),r) : step (star A) a = (a=None & r = True#start A)";
-by (Simp_tac 1);
-qed_spec_mp "start_step_star";
-AddIffs [start_step_star];
-
-val epsclosure_start_step_star =
- read_instantiate [("p","start(star A)")] in_unfold_rtrancl2;
-
-Goal
- "(start(star A),r) : steps (star A) w = \
-\ ((w=[] & r= start(star A)) | (True#start A,r) : steps (star A) w)";
-by (rtac iffI 1);
- by (case_tac "w" 1);
- by (asm_full_simp_tac (simpset() addsimps
- [epsclosure_start_step_star]) 1);
- by (Asm_full_simp_tac 1);
- by (Clarify_tac 1);
- by (asm_full_simp_tac (simpset() addsimps
- [epsclosure_start_step_star]) 1);
- by (Blast_tac 1);
-by (etac disjE 1);
- by (Asm_simp_tac 1);
-by (blast_tac (claset() addIs [thm"in_steps_epsclosure"]) 1);
-qed "start_steps_star";
-
-Goalw [star_def] "!A. fin (star A) (True#p) = fin A p";
-by (Simp_tac 1);
-qed_spec_mp "fin_star_True";
-AddIffs [fin_star_True];
-
-Goalw [star_def] "!A. fin (star A) (start(star A))";
-by (Simp_tac 1);
-qed_spec_mp "fin_star_start";
-AddIffs [fin_star_start];
-
-(* too complex! Simpler if loop back to start(star A)? *)
-Goalw [thm"accepts_def"]
- "accepts (star A) w = \
-\ (? us. (!u : set(us). accepts A u) & (w = concat us) )";
-by (simp_tac (simpset() addsimps [start_steps_star,True_start_steps_star]) 1);
-by (rtac iffI 1);
- by (Clarify_tac 1);
- by (etac disjE 1);
- by (Clarify_tac 1);
- by (Simp_tac 1);
- by (res_inst_tac [("x","[]")] exI 1);
- by (Simp_tac 1);
- by (Clarify_tac 1);
- by (res_inst_tac [("x","us@[v]")] exI 1);
- by (asm_full_simp_tac (simpset() addsimps [thm"accepts_def"]) 1);
- by (Blast_tac 1);
-by (Clarify_tac 1);
-by (res_inst_tac [("xs","us")] rev_exhaust 1);
- by (Asm_simp_tac 1);
- by (Blast_tac 1);
-by (Clarify_tac 1);
-by (asm_full_simp_tac (simpset() addsimps [thm"accepts_def"]) 1);
-by (Blast_tac 1);
-qed "accepts_star";
-
-
-(***** Correctness of r2n *****)
-
-Goal
- "!w. accepts (rexp2nae r) w = (w : lang r)";
-by (induct_tac "r" 1);
- by (simp_tac (simpset() addsimps [thm"accepts_def"]) 1);
- by (simp_tac(simpset() addsimps [accepts_atom]) 1);
- by (asm_simp_tac (simpset() addsimps [accepts_or]) 1);
- by (asm_simp_tac (simpset() addsimps [accepts_conc,thm"RegSet.conc_def"]) 1);
-by (asm_simp_tac (simpset() addsimps [accepts_star,thm"in_star"]) 1);
-qed "accepts_rexp2nae";