src/HOL/Tools/Argo/argo_tactic.ML
changeset 63960 3daf02070be5
child 63992 3aa9837d05c7
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Argo/argo_tactic.ML	Thu Sep 29 20:54:44 2016 +0200
@@ -0,0 +1,730 @@
+(*  Title:      HOL/Tools/argo_tactic.ML
+    Author:     Sascha Boehme
+
+HOL method and tactic for the Argo solver.
+*)
+
+signature ARGO_TACTIC =
+sig
+  val trace: string Config.T
+  val timeout: real Config.T
+
+  (* extending the tactic *)
+  type trans_context =
+    Name.context * Argo_Expr.typ Typtab.table * (string * Argo_Expr.typ) Termtab.table
+  type ('a, 'b) trans = 'a -> trans_context -> 'b * trans_context
+  type ('a, 'b) trans' = 'a -> trans_context -> ('b * trans_context) option
+  type extension = {
+    trans_type: (typ, Argo_Expr.typ) trans -> (typ, Argo_Expr.typ) trans',
+    trans_term: (term, Argo_Expr.expr) trans -> (term, Argo_Expr.expr) trans',
+    term_of: (Argo_Expr.expr -> term) -> Argo_Expr.expr -> term option,
+    replay_rewr: Proof.context -> Argo_Proof.rewrite -> conv,
+    replay: (Argo_Expr.expr -> cterm) -> Proof.context -> Argo_Proof.rule -> thm list -> thm option}
+  val add_extension: extension -> theory -> theory
+
+  (* proof utilities *)
+  val discharges: thm -> thm list -> thm list
+  val flatten_conv: conv -> thm -> conv
+
+  (* interface to the tactic as well as the underlying checker and prover *)
+  datatype result = Satisfiable of term -> bool option | Unsatisfiable
+  val check: term list -> Proof.context -> result * Proof.context
+  val prove: thm list -> Proof.context -> thm option * Proof.context
+  val argo_tac: Proof.context -> thm list -> int -> tactic
+end
+
+structure Argo_Tactic: ARGO_TACTIC =
+struct
+
+(* readable fresh names for terms *)
+
+fun fresh_name n = Name.variant (case Long_Name.base_name n of "" => "x" | n' => n')
+
+fun fresh_type_name (Type (n, _)) = fresh_name n
+  | fresh_type_name (TFree (n, _)) = fresh_name n
+  | fresh_type_name (TVar ((n, i), _)) = fresh_name (n ^ "." ^ string_of_int i)
+
+fun fresh_term_name (Const (n, _)) = fresh_name n
+  | fresh_term_name (Free (n, _)) = fresh_name n
+  | fresh_term_name (Var ((n, i), _)) = fresh_name (n ^ "." ^ string_of_int i)
+  | fresh_term_name _ = fresh_name ""
+
+
+(* tracing *)
+
+datatype mode = None | Basic | Full
+
+fun string_of_mode None = "none"
+  | string_of_mode Basic = "basic"
+  | string_of_mode Full = "full"
+
+fun requires_mode None = []
+  | requires_mode Basic = [Basic, Full]
+  | requires_mode Full = [Full]
+
+val trace = Attrib.setup_config_string @{binding argo_trace} (K (string_of_mode None))
+
+fun allows_mode ctxt = exists (equal (Config.get ctxt trace) o string_of_mode) o requires_mode
+
+fun output mode ctxt msg = if allows_mode ctxt mode then Output.tracing ("Argo: " ^ msg) else ()
+val tracing = output Basic
+val full_tracing = output Full
+
+fun with_mode mode ctxt f = if allows_mode ctxt mode then f ctxt else ()
+val with_tracing = with_mode Basic
+val with_full_tracing = with_mode Full
+
+
+(* timeout *)
+
+val timeout = Attrib.setup_config_real @{binding argo_timeout} (K 10.0)
+
+fun time_of_timeout ctxt = Time.fromReal (Config.get ctxt timeout)
+
+fun with_timeout ctxt f x = Timeout.apply (time_of_timeout ctxt) f x
+
+
+(* extending the tactic *)
+
+type trans_context =
+  Name.context * Argo_Expr.typ Typtab.table * (string * Argo_Expr.typ) Termtab.table
+
+type ('a, 'b) trans = 'a -> trans_context -> 'b * trans_context
+type ('a, 'b) trans' = 'a -> trans_context -> ('b * trans_context) option
+
+type extension = {
+  trans_type: (typ, Argo_Expr.typ) trans -> (typ, Argo_Expr.typ) trans',
+  trans_term: (term, Argo_Expr.expr) trans -> (term, Argo_Expr.expr) trans',
+  term_of: (Argo_Expr.expr -> term) -> Argo_Expr.expr -> term option,
+  replay_rewr: Proof.context -> Argo_Proof.rewrite -> conv,
+  replay: (Argo_Expr.expr -> cterm) -> Proof.context -> Argo_Proof.rule -> thm list -> thm option}
+
+fun eq_extension ((serial1, _), (serial2, _)) = (serial1 = serial2)
+
+structure Extensions = Theory_Data
+(
+  type T = (serial * extension) list
+  val empty = []
+  val extend = I
+  val merge = merge eq_extension 
+)
+
+fun add_extension ext = Extensions.map (insert eq_extension (serial (), ext))
+fun get_extensions ctxt = Extensions.get (Proof_Context.theory_of ctxt)
+fun apply_first ctxt f = get_first (fn (_, e) => f e) (get_extensions ctxt)
+
+fun ext_trans sel ctxt f x tcx = apply_first ctxt (fn ext => sel ext f x tcx)
+
+val ext_trans_type = ext_trans (fn {trans_type, ...}: extension => trans_type)
+val ext_trans_term = ext_trans (fn {trans_term, ...}: extension => trans_term)
+
+fun ext_term_of ctxt f e = apply_first ctxt (fn {term_of, ...}: extension => term_of f e)
+
+fun ext_replay_rewr ctxt r = 
+  get_extensions ctxt
+  |> map (fn (_, {replay_rewr, ...}: extension) => replay_rewr ctxt r)
+  |> Conv.first_conv
+
+fun ext_replay cprop_of ctxt rule prems =
+  (case apply_first ctxt (fn {replay, ...}: extension => replay cprop_of ctxt rule prems) of
+    SOME thm => thm
+  | NONE => raise THM ("failed to replay " ^ quote (Argo_Proof.string_of_rule rule), 0, []))
+
+
+(* translating input terms *)
+
+fun add_new_type T (names, types, terms) =
+  let
+    val (n, names') = fresh_type_name T names
+    val ty = Argo_Expr.Type n
+  in (ty, (names', Typtab.update (T, ty) types, terms)) end
+
+fun add_type T (tcx as (_, types, _)) =
+  (case Typtab.lookup types T of
+    SOME ty => (ty, tcx)
+  | NONE => add_new_type T tcx)
+
+fun trans_type _ @{typ HOL.bool} = pair Argo_Expr.Bool
+  | trans_type ctxt (Type (@{type_name "fun"}, [T1, T2])) =
+      trans_type ctxt T1 ##>> trans_type ctxt T2 #>> Argo_Expr.Func
+  | trans_type ctxt T = (fn tcx =>
+      (case ext_trans_type ctxt (trans_type ctxt) T tcx of
+        SOME result => result
+      | NONE => add_type T tcx))
+
+fun add_new_term ctxt t T tcx =
+  let
+    val (ty, (names, types, terms)) = trans_type ctxt T tcx
+    val (n, names') = fresh_term_name t names
+    val c = (n, ty)
+  in (Argo_Expr.mk_con c, (names', types, Termtab.update (t, c) terms)) end
+
+fun add_term ctxt t (tcx as (_, _, terms)) =
+  (case Termtab.lookup terms t of
+    SOME c => (Argo_Expr.mk_con c, tcx)
+  | NONE => add_new_term ctxt t (Term.fastype_of t) tcx)
+
+fun mk_eq @{typ HOL.bool} = Argo_Expr.mk_iff
+  | mk_eq _ = Argo_Expr.mk_eq
+
+fun trans_term _ @{const HOL.True} = pair Argo_Expr.true_expr
+  | trans_term _ @{const HOL.False} = pair Argo_Expr.false_expr
+  | trans_term ctxt (@{const HOL.Not} $ t) = trans_term ctxt t #>> Argo_Expr.mk_not
+  | trans_term ctxt (@{const HOL.conj} $ t1 $ t2) =
+      trans_term ctxt t1 ##>> trans_term ctxt t2 #>> uncurry Argo_Expr.mk_and2
+  | trans_term ctxt (@{const HOL.disj} $ t1 $ t2) =
+      trans_term ctxt t1 ##>> trans_term ctxt t2 #>> uncurry Argo_Expr.mk_or2
+  | trans_term ctxt (@{const HOL.implies} $ t1 $ t2) =
+      trans_term ctxt t1 ##>> trans_term ctxt t2 #>> uncurry Argo_Expr.mk_imp
+  | trans_term ctxt (Const (@{const_name HOL.If}, _) $ t1 $ t2 $ t3) =
+      trans_term ctxt t1 ##>> trans_term ctxt t2 ##>> trans_term ctxt t3 #>>
+      (fn ((u1, u2), u3) => Argo_Expr.mk_ite u1 u2 u3)
+  | trans_term ctxt (Const (@{const_name HOL.eq}, T) $ t1 $ t2) =
+      trans_term ctxt t1 ##>> trans_term ctxt t2 #>> uncurry (mk_eq (Term.domain_type T))
+  | trans_term ctxt (t as (t1 $ t2)) = (fn tcx =>
+      (case ext_trans_term ctxt (trans_term ctxt) t tcx of
+        SOME result => result
+      | NONE => tcx |> trans_term ctxt t1 ||>> trans_term ctxt t2 |>> uncurry Argo_Expr.mk_app))
+  | trans_term ctxt t = (fn tcx =>
+      (case ext_trans_term ctxt (trans_term ctxt) t tcx of
+        SOME result => result
+      | NONE => add_term ctxt t tcx))
+
+fun translate ctxt prop = trans_term ctxt (HOLogic.dest_Trueprop prop)
+
+
+(* invoking the solver *)
+
+type data = {
+  names: Name.context,
+  types: Argo_Expr.typ Typtab.table,
+  terms: (string * Argo_Expr.typ) Termtab.table,
+  argo: Argo_Solver.context}
+
+fun mk_data names types terms argo: data = {names=names, types=types, terms=terms, argo=argo}
+val empty_data = mk_data Name.context Typtab.empty Termtab.empty Argo_Solver.context
+
+structure Solver_Data = Proof_Data
+(
+  type T = data option
+  fun init _ = SOME empty_data
+)
+
+datatype ('m, 'p) solver_result = Model of 'm | Proof of 'p
+
+fun raw_solve es argo = Model (Argo_Solver.assert es argo)
+  handle Argo_Proof.UNSAT proof => Proof proof
+
+fun value_of terms model t =
+  (case Termtab.lookup terms t of
+    SOME c => model c
+  | _ => NONE)
+
+fun trace_props props ctxt =
+  tracing ctxt (Pretty.string_of (Pretty.big_list "using these propositions:"
+    (map (Syntax.pretty_term ctxt) props)))
+
+fun trace_result ctxt ({elapsed, ...}: Timing.timing) msg =
+  tracing ctxt ("found a " ^ msg ^ " in " ^ string_of_int (Time.toMilliseconds elapsed) ^ " ms")
+
+fun solve props ctxt =
+  (case Solver_Data.get ctxt of
+    NONE => error "bad Argo solver context"
+  | SOME {names, types, terms, argo} =>
+      let
+        val _ = with_tracing ctxt (trace_props props)
+        val (es, (names', types', terms')) = fold_map (translate ctxt) props (names, types, terms)
+        val _ = tracing ctxt "starting the prover"
+      in
+        (case Timing.timing (raw_solve es) argo of
+          (time, Proof proof) =>
+            let val _ = trace_result ctxt time "proof"
+            in (Proof (terms', proof), Solver_Data.put NONE ctxt) end
+        | (time, Model argo') =>
+            let
+              val _ = trace_result ctxt time "model"
+              val model = value_of terms' (Argo_Solver.model_of argo')
+            in (Model model, Solver_Data.put (SOME (mk_data names' types' terms' argo')) ctxt) end)
+      end)
+
+
+(* reverse translation *)
+
+structure Contab = Table(type key = string * Argo_Expr.typ val ord = Argo_Expr.con_ord)
+
+fun mk_nary f ts = uncurry (fold_rev (curry f)) (split_last ts)
+
+fun mk_nary' d _ [] = d
+  | mk_nary' _ f ts = mk_nary f ts
+
+fun mk_ite t1 t2 t3 =
+  let
+    val T = Term.fastype_of t2
+    val ite = Const (@{const_name HOL.If}, [@{typ HOL.bool}, T, T] ---> T)
+  in ite $ t1 $ t2 $ t3 end
+
+fun term_of _ (Argo_Expr.E (Argo_Expr.True, _)) = @{const HOL.True}
+  | term_of _ (Argo_Expr.E (Argo_Expr.False, _)) = @{const HOL.False}
+  | term_of cx (Argo_Expr.E (Argo_Expr.Not, [e])) = HOLogic.mk_not (term_of cx e)
+  | term_of cx (Argo_Expr.E (Argo_Expr.And, es)) =
+      mk_nary' @{const HOL.True} HOLogic.mk_conj (map (term_of cx) es)
+  | term_of cx (Argo_Expr.E (Argo_Expr.Or, es)) =
+      mk_nary' @{const HOL.False} HOLogic.mk_disj (map (term_of cx) es)
+  | term_of cx (Argo_Expr.E (Argo_Expr.Imp, [e1, e2])) =
+      HOLogic.mk_imp (term_of cx e1, term_of cx e2)
+  | term_of cx (Argo_Expr.E (Argo_Expr.Iff, [e1, e2])) =
+      HOLogic.mk_eq (term_of cx e1, term_of cx e2)
+  | term_of cx (Argo_Expr.E (Argo_Expr.Ite, [e1, e2, e3])) =
+      mk_ite (term_of cx e1) (term_of cx e2) (term_of cx e3)
+  | term_of cx (Argo_Expr.E (Argo_Expr.Eq, [e1, e2])) =
+      HOLogic.mk_eq (term_of cx e1, term_of cx e2)
+  | term_of cx (Argo_Expr.E (Argo_Expr.App, [e1, e2])) =
+      term_of cx e1 $ term_of cx e2
+  | term_of (_, cons) (Argo_Expr.E (Argo_Expr.Con (c as (n, _)), _)) =
+      (case Contab.lookup cons c of
+        SOME t => t
+      | NONE => error ("Unexpected expression named " ^ quote n))
+  | term_of (cx as (ctxt, _)) e =
+      (case ext_term_of ctxt (term_of cx) e of
+        SOME t => t
+      | NONE => raise Fail "bad expression")
+
+fun as_prop ct = Thm.apply @{cterm HOL.Trueprop} ct
+
+fun cterm_of ctxt cons e = Thm.cterm_of ctxt (term_of (ctxt, cons) e)
+fun cprop_of ctxt cons e = as_prop (cterm_of ctxt cons e)
+
+
+(* generic proof tools *)
+
+fun discharge thm rule = thm INCR_COMP rule
+fun discharge2 thm1 thm2 rule = discharge thm2 (discharge thm1 rule)
+fun discharges thm rules = [thm] RL rules
+
+fun under_assumption f ct =
+  let val cprop = as_prop ct
+  in Thm.implies_intr cprop (f (Thm.assume cprop)) end
+
+fun instantiate cv ct = Thm.instantiate ([], [(Term.dest_Var (Thm.term_of cv), ct)])
+
+
+(* proof replay for tautologies *)
+
+fun prove_taut ctxt ns t = Goal.prove ctxt ns [] (HOLogic.mk_Trueprop t)
+  (fn {context, ...} => HEADGOAL (Classical.fast_tac context))
+
+fun with_frees ctxt n mk =
+  let
+    val ns = map (fn i => "P" ^ string_of_int i) (0 upto (n - 1))
+    val ts = map (Free o rpair @{typ bool}) ns
+    val t = mk_nary HOLogic.mk_disj (mk ts)
+  in prove_taut ctxt ns t end
+
+fun taut_and1_term ts = mk_nary HOLogic.mk_conj ts :: map HOLogic.mk_not ts
+fun taut_and2_term i ts = [HOLogic.mk_not (mk_nary HOLogic.mk_conj ts), nth ts i]
+fun taut_or1_term i ts = [mk_nary HOLogic.mk_disj ts, HOLogic.mk_not (nth ts i)]
+fun taut_or2_term ts = HOLogic.mk_not (mk_nary HOLogic.mk_disj ts) :: ts
+
+val iff_1_taut = @{lemma "P = Q | P | Q" by fast}
+val iff_2_taut = @{lemma "P = Q | (~P) | (~Q)" by fast}
+val iff_3_taut = @{lemma "~(P = Q) | (~P) | Q" by fast}
+val iff_4_taut = @{lemma "~(P = Q) | P | (~Q)" by fast}
+val ite_then_taut = @{lemma "~P | (if P then t else u) = t" by auto}
+val ite_else_taut = @{lemma "P | (if P then t else u) = u" by auto}
+
+fun taut_rule_of ctxt (Argo_Proof.Taut_And_1 n) = with_frees ctxt n taut_and1_term
+  | taut_rule_of ctxt (Argo_Proof.Taut_And_2 (i, n)) = with_frees ctxt n (taut_and2_term i)
+  | taut_rule_of ctxt (Argo_Proof.Taut_Or_1 (i, n)) = with_frees ctxt n (taut_or1_term i)
+  | taut_rule_of ctxt (Argo_Proof.Taut_Or_2 n) = with_frees ctxt n taut_or2_term
+  | taut_rule_of _ Argo_Proof.Taut_Iff_1 = iff_1_taut
+  | taut_rule_of _ Argo_Proof.Taut_Iff_2 = iff_2_taut
+  | taut_rule_of _ Argo_Proof.Taut_Iff_3 = iff_3_taut
+  | taut_rule_of _ Argo_Proof.Taut_Iff_4 = iff_4_taut
+  | taut_rule_of _ Argo_Proof.Taut_Ite_Then = ite_then_taut
+  | taut_rule_of _ Argo_Proof.Taut_Ite_Else = ite_else_taut
+
+fun replay_taut ctxt k ct =
+  let val rule = taut_rule_of ctxt k
+  in Thm.instantiate (Thm.match (Thm.cprop_of rule, ct)) rule end
+
+
+(* proof replay for conjunct extraction *)
+
+fun replay_conjunct 0 1 thm = thm
+  | replay_conjunct 0 _ thm = discharge thm @{thm conjunct1}
+  | replay_conjunct 1 2 thm = discharge thm @{thm conjunct2}
+  | replay_conjunct i n thm = replay_conjunct (i - 1) (n - 1) (discharge thm @{thm conjunct2})
+
+
+(* proof replay for rewrite steps *)
+
+fun mk_rewr thm = thm RS @{thm eq_reflection}
+
+fun not_nary_conv rule i ct =
+  if i > 1 then (Conv.rewr_conv rule then_conv Conv.arg_conv (not_nary_conv rule (i - 1))) ct
+  else Conv.all_conv ct
+
+val flatten_and_thm = @{lemma "(P1 & P2) & P3 == P1 & P2 & P3" by simp}
+val flatten_or_thm = @{lemma "(P1 | P2) | P3 == P1 | P2 | P3" by simp}
+
+fun flatten_conv cv rule ct = (
+  Conv.try_conv (Conv.arg_conv cv) then_conv
+  Conv.try_conv (Conv.rewr_conv rule then_conv cv)) ct
+
+fun flat_conj_conv ct =
+  (case Thm.term_of ct of
+    @{const HOL.conj} $ _ $ _ => flatten_conv flat_conj_conv flatten_and_thm ct
+  | _ => Conv.all_conv ct)
+
+fun flat_disj_conv ct =
+  (case Thm.term_of ct of
+    @{const HOL.disj} $ _ $ _ => flatten_conv flat_disj_conv flatten_or_thm ct
+  | _ => Conv.all_conv ct)
+
+fun explode rule1 rule2 thm =
+  explode rule1 rule2 (thm RS rule1) @ explode rule1 rule2 (thm RS rule2) handle THM _ => [thm]
+val explode_conj = explode @{thm conjunct1} @{thm conjunct2}
+val explode_ndis = explode @{lemma "~(P | Q) ==> ~P" by auto} @{lemma "~(P | Q) ==> ~Q" by auto}
+
+fun pick_false i thms = nth thms i
+
+fun pick_dual rule (i1, i2) thms =
+  rule OF [nth thms i1, nth thms i2] handle THM _ => rule OF [nth thms i2, nth thms i1]
+val pick_dual_conj = pick_dual @{lemma "~P ==> P ==> False" by auto}
+val pick_dual_ndis = pick_dual @{lemma "~P ==> P ==> ~True" by auto}
+
+fun join thm0 rule is thms =
+  let
+    val l = length thms
+    val thms' = fold (fn i => cons (if 0 <= i andalso i < l then nth thms i else thm0)) is []
+  in fold (fn thm => fn thm' => discharge2 thm thm' rule) (tl thms') (hd thms') end
+
+val join_conj = join @{lemma "True" by auto} @{lemma "P ==> Q ==> P & Q" by auto}
+val join_ndis = join @{lemma "~False" by auto} @{lemma "~P ==> ~Q ==> ~(P | Q)" by auto}
+
+val false_thm = @{lemma "False ==> P" by auto}
+val ntrue_thm = @{lemma "~True ==> P" by auto}
+val iff_conj_thm = @{lemma "(P ==> Q) ==> (Q ==> P) ==> P = Q" by auto}
+val iff_ndis_thm = @{lemma "(~P ==> ~Q) ==> (~Q ==> ~P) ==> P = Q" by auto}
+
+fun iff_intro rule lf rf ct =
+  let
+    val lhs = under_assumption lf ct
+    val rhs = rf (Thm.dest_arg (snd (Thm.dest_implies (Thm.cprop_of lhs))))
+  in mk_rewr (discharge2 lhs rhs rule) end
+
+fun with_conj f g ct = iff_intro iff_conj_thm (f o explode_conj) g ct
+fun with_ndis f g ct = iff_intro iff_ndis_thm (f o explode_ndis) g (Thm.apply @{cterm HOL.Not} ct)
+
+fun swap_indices n iss = map (fn i => find_index (fn is => member (op =) is i) iss) (0 upto (n - 1))
+fun sort_nary w f g (n, iss) = w (f (map hd iss)) (under_assumption (f (swap_indices n iss) o g))
+val sort_conj = sort_nary with_conj join_conj explode_conj
+val sort_ndis = sort_nary with_ndis join_ndis explode_ndis 
+
+val not_true_thm = mk_rewr @{lemma "(~True) = False" by auto}
+val not_false_thm = mk_rewr @{lemma "(~False) = True" by auto}
+val not_not_thm = mk_rewr @{lemma "(~~P) = P" by auto}
+val not_and_thm = mk_rewr @{lemma "(~(P & Q)) = (~P | ~Q)" by auto}
+val not_or_thm = mk_rewr @{lemma "(~(P | Q)) = (~P & ~Q)" by auto}
+val not_iff_thms = map mk_rewr
+  @{lemma "(~((~P) = Q)) = (P = Q)" "(~(P = (~Q))) = (P = Q)" "(~(P = Q)) = ((~P) = Q)" by auto}
+val iff_true_thms = map mk_rewr @{lemma "(True = P) = P" "(P = True) = P" by auto}
+val iff_false_thms = map mk_rewr @{lemma "(False = P) = (~P)" "(P = False) = (~P)" by auto}
+val iff_not_not_thm = mk_rewr @{lemma "((~P) = (~Q)) = (P = Q)" by auto}
+val iff_refl_thm = mk_rewr @{lemma "(P = P) = True" by auto}
+val iff_symm_thm = mk_rewr @{lemma "(P = Q) = (Q = P)" by auto}
+val iff_dual_thms = map mk_rewr @{lemma "(P = (~P)) = False" "((~P) = P) = False" by auto}
+val imp_thm = mk_rewr @{lemma "(P --> Q) = (~P | Q)" by auto}
+val ite_prop_thm = mk_rewr @{lemma "(If P Q R) = ((~P | Q) & (P | R) & (Q | R))" by auto}
+val ite_true_thm = mk_rewr @{lemma "(If True t u) = t" by auto}
+val ite_false_thm = mk_rewr @{lemma "(If False t u) = u" by auto}
+val ite_eq_thm = mk_rewr @{lemma "(If P t t) = t" by auto}
+val eq_refl_thm = mk_rewr @{lemma "(t = t) = True" by auto}
+val eq_symm_thm = mk_rewr @{lemma "(t1 = t2) = (t2 = t1)" by auto}
+
+fun replay_rewr _ Argo_Proof.Rewr_Not_True = Conv.rewr_conv not_true_thm
+  | replay_rewr _ Argo_Proof.Rewr_Not_False = Conv.rewr_conv not_false_thm
+  | replay_rewr _ Argo_Proof.Rewr_Not_Not = Conv.rewr_conv not_not_thm
+  | replay_rewr _ (Argo_Proof.Rewr_Not_And i) = not_nary_conv not_and_thm i
+  | replay_rewr _ (Argo_Proof.Rewr_Not_Or i) = not_nary_conv not_or_thm i
+  | replay_rewr _ Argo_Proof.Rewr_Not_Iff = Conv.rewrs_conv not_iff_thms
+  | replay_rewr _ (Argo_Proof.Rewr_And_False i) = with_conj (pick_false i) (K false_thm)
+  | replay_rewr _ (Argo_Proof.Rewr_And_Dual ip) = with_conj (pick_dual_conj ip) (K false_thm)
+  | replay_rewr _ (Argo_Proof.Rewr_And_Sort is) = flat_conj_conv then_conv sort_conj is
+  | replay_rewr _ (Argo_Proof.Rewr_Or_True i) = with_ndis (pick_false i) (K ntrue_thm)
+  | replay_rewr _ (Argo_Proof.Rewr_Or_Dual ip) = with_ndis (pick_dual_ndis ip) (K ntrue_thm)
+  | replay_rewr _ (Argo_Proof.Rewr_Or_Sort is) = flat_disj_conv then_conv sort_ndis is
+  | replay_rewr _ Argo_Proof.Rewr_Iff_True = Conv.rewrs_conv iff_true_thms
+  | replay_rewr _ Argo_Proof.Rewr_Iff_False = Conv.rewrs_conv iff_false_thms
+  | replay_rewr _ Argo_Proof.Rewr_Iff_Not_Not = Conv.rewr_conv iff_not_not_thm
+  | replay_rewr _ Argo_Proof.Rewr_Iff_Refl = Conv.rewr_conv iff_refl_thm
+  | replay_rewr _ Argo_Proof.Rewr_Iff_Symm = Conv.rewr_conv iff_symm_thm
+  | replay_rewr _ Argo_Proof.Rewr_Iff_Dual  = Conv.rewrs_conv iff_dual_thms
+  | replay_rewr _ Argo_Proof.Rewr_Imp = Conv.rewr_conv imp_thm
+  | replay_rewr _ Argo_Proof.Rewr_Ite_Prop = Conv.rewr_conv ite_prop_thm
+  | replay_rewr _ Argo_Proof.Rewr_Ite_True = Conv.rewr_conv ite_true_thm
+  | replay_rewr _ Argo_Proof.Rewr_Ite_False = Conv.rewr_conv ite_false_thm
+  | replay_rewr _ Argo_Proof.Rewr_Ite_Eq = Conv.rewr_conv ite_eq_thm
+  | replay_rewr _ Argo_Proof.Rewr_Eq_Refl = Conv.rewr_conv eq_refl_thm
+  | replay_rewr _ Argo_Proof.Rewr_Eq_Symm = Conv.rewr_conv eq_symm_thm
+  | replay_rewr ctxt r = ext_replay_rewr ctxt r
+
+fun binop_conv cv1 cv2 = Conv.combination_conv (Conv.arg_conv cv1) cv2
+
+fun replay_conv _ Argo_Proof.Keep_Conv ct = Conv.all_conv ct
+  | replay_conv ctxt (Argo_Proof.Then_Conv (c1, c2)) ct = 
+      (replay_conv ctxt c1 then_conv replay_conv ctxt c2) ct
+  | replay_conv ctxt (Argo_Proof.Args_Conv cs) ct = replay_args_conv ctxt cs ct
+  | replay_conv ctxt (Argo_Proof.Rewr_Conv r) ct = replay_rewr ctxt r ct
+
+and replay_args_conv _ [] ct = Conv.all_conv ct
+  | replay_args_conv ctxt [c] ct = Conv.arg_conv (replay_conv ctxt c) ct
+  | replay_args_conv ctxt [c1, c2] ct = binop_conv (replay_conv ctxt c1) (replay_conv ctxt c2) ct
+  | replay_args_conv ctxt (c :: cs) ct =
+      (case Term.head_of (Thm.term_of ct) of
+        Const (@{const_name HOL.If}, _) =>
+          let val (cs', c') = split_last cs
+          in Conv.combination_conv (replay_args_conv ctxt (c :: cs')) (replay_conv ctxt c') ct end
+      | _ => binop_conv (replay_conv ctxt c) (replay_args_conv ctxt cs) ct)
+
+fun replay_rewrite ctxt c thm = Conv.fconv_rule (HOLogic.Trueprop_conv (replay_conv ctxt c)) thm
+
+
+(* proof replay for clauses *)
+
+val prep_clause_rule = @{lemma "P ==> ~P ==> False" by fast}
+val extract_lit_rule = @{lemma "(~(P | Q) ==> False) ==> ~P ==> ~Q ==> False" by fast}
+
+fun add_lit i thm lits =
+  let val ct = Thm.cprem_of thm 1
+  in (Thm.implies_elim thm (Thm.assume ct), (i, ct) :: lits) end
+
+fun extract_lits [] _ = error "Bad clause"
+  | extract_lits [i] (thm, lits) = add_lit i thm lits
+  | extract_lits (i :: is) (thm, lits) =
+      extract_lits is (add_lit i (discharge thm extract_lit_rule) lits)
+
+fun lit_ord ((l1, _), (l2, _)) = int_ord (abs l1, abs l2)
+
+fun replay_with_lits [] thm lits = (thm, lits)
+  | replay_with_lits is thm lits =
+      extract_lits is (discharge thm prep_clause_rule, lits)
+      ||> Ord_List.make lit_ord
+
+fun replay_clause is thm = replay_with_lits is thm []
+
+
+(* proof replay for unit resolution *)
+
+val unit_rule = @{lemma "(P ==> False) ==> (~P ==> False) ==> False" by fast}
+val unit_rule_var = Thm.dest_arg (Thm.dest_arg1 (Thm.cprem_of unit_rule 1))
+val bogus_ct = @{cterm HOL.True}
+
+fun replay_unit_res lit (pthm, plits) (nthm, nlits) =
+  let
+    val plit = the (AList.lookup (op =) plits lit)
+    val nlit = the (AList.lookup (op =) nlits (~lit))
+    val prune = Ord_List.remove lit_ord (lit, bogus_ct)
+  in
+    unit_rule
+    |> instantiate unit_rule_var (Thm.dest_arg plit)
+    |> Thm.elim_implies (Thm.implies_intr plit pthm)
+    |> Thm.elim_implies (Thm.implies_intr nlit nthm)
+    |> rpair (Ord_List.union lit_ord (prune nlits) (prune plits))
+  end
+
+
+(* proof replay for hypothesis *)
+
+val dneg_rule = @{lemma "~~P ==> P" by auto}
+
+fun replay_hyp i ct =
+  if i < 0 then (Thm.assume ct, [(~i, ct)])
+  else
+    let val cu = as_prop (Thm.apply @{cterm HOL.Not} (Thm.apply @{cterm HOL.Not} (Thm.dest_arg ct)))
+    in (discharge (Thm.assume cu) dneg_rule, [(~i, cu)]) end
+
+
+(* proof replay for lemma *)
+
+fun replay_lemma is (thm, lits) = replay_with_lits is thm lits
+
+
+(* proof replay for reflexivity *)
+
+val refl_rule = @{thm refl}
+val refl_rule_var = Thm.dest_arg1 (Thm.dest_arg (Thm.cprop_of refl_rule))
+
+fun replay_refl ct = Thm.instantiate (Thm.match (refl_rule_var, ct)) refl_rule
+
+
+(* proof replay for symmetry *)
+
+val symm_rules = @{lemma "a = b ==> b = a" "~(a = b) ==> ~(b = a)" by simp_all}
+
+fun replay_symm thm = hd (discharges thm symm_rules)
+
+
+(* proof replay for transitivity *)
+
+val trans_rules = @{lemma
+  "~(a = b) ==> b = c ==> ~(a = c)"
+  "a = b ==> ~(b = c) ==> ~(a = c)"
+  "a = b ==> b = c ==> a = c"
+  by simp_all}
+
+fun replay_trans thm1 thm2 = hd (discharges thm2 (discharges thm1 trans_rules))
+
+
+(* proof replay for congruence *)
+
+fun replay_cong thm1 thm2 = discharge thm2 (discharge thm1 @{thm cong})
+
+
+(* proof replay for substitution *)
+
+val subst_rule1 = @{lemma "~(p a) ==> p = q ==> a = b ==> ~(q b)" by simp}
+val subst_rule2 = @{lemma "p a ==> p = q ==> a = b ==> q b" by simp}
+
+fun replay_subst thm1 thm2 thm3 =
+  subst_rule1 OF [thm1, thm2, thm3] handle THM _ => subst_rule2 OF [thm1, thm2, thm3]
+
+
+(* proof replay *)
+
+structure Thm_Cache = Table(type key = Argo_Proof.proof_id val ord = Argo_Proof.proof_id_ord)
+
+val unclausify_rule1 = @{lemma "(~P ==> False) ==> P" by auto}
+val unclausify_rule2 = @{lemma "(P ==> False) ==> ~P" by auto}
+
+fun unclausify (thm, lits) ls =
+  (case (Thm.prop_of thm, lits) of
+    (@{const HOL.Trueprop} $ @{const HOL.False}, [(_, ct)]) =>
+      let val thm = Thm.implies_intr ct thm
+      in (discharge thm unclausify_rule1 handle THM _ => discharge thm unclausify_rule2, ls) end
+  | _ => (thm, Ord_List.union lit_ord lits ls))
+
+fun with_thms f tps = fold_map unclausify tps [] |>> f
+
+fun bad_premises () = raise Fail "bad number of premises"
+fun with_thms1 f = with_thms (fn [thm] => f thm | _ => bad_premises ())
+fun with_thms2 f = with_thms (fn [thm1, thm2] => f thm1 thm2 | _ => bad_premises ())
+fun with_thms3 f = with_thms (fn [thm1, thm2, thm3] => f thm1 thm2 thm3 | _ => bad_premises ())
+
+fun replay_rule (ctxt, cons, facts) prems rule =
+  (case rule of
+    Argo_Proof.Axiom i => (nth facts i, [])
+  | Argo_Proof.Taut (k, concl) => (replay_taut ctxt k (cprop_of ctxt cons concl), [])
+  | Argo_Proof.Conjunct (i, n) => with_thms1 (replay_conjunct i n) prems
+  | Argo_Proof.Rewrite c => with_thms1 (replay_rewrite ctxt c) prems
+  | Argo_Proof.Clause is => replay_clause is (fst (hd prems))
+  | Argo_Proof.Unit_Res i => replay_unit_res i (hd prems) (hd (tl prems))
+  | Argo_Proof.Hyp (i, concl) => replay_hyp i (cprop_of ctxt cons concl)
+  | Argo_Proof.Lemma is => replay_lemma is (hd prems)
+  | Argo_Proof.Refl concl => (replay_refl (cterm_of ctxt cons concl), [])
+  | Argo_Proof.Symm => with_thms1 replay_symm prems
+  | Argo_Proof.Trans => with_thms2 replay_trans prems
+  | Argo_Proof.Cong => with_thms2 replay_cong prems
+  | Argo_Proof.Subst => with_thms3 replay_subst prems
+  | _ => with_thms (ext_replay (cprop_of ctxt cons) ctxt rule) prems)
+
+fun with_cache f proof thm_cache =
+  (case Thm_Cache.lookup thm_cache (Argo_Proof.id_of proof) of
+    SOME thm => (thm, thm_cache)
+  | NONE =>
+      let val (thm, thm_cache') = f proof thm_cache
+      in (thm, Thm_Cache.update (Argo_Proof.id_of proof, thm) thm_cache') end)
+
+fun trace_step ctxt proof_id rule proofs = with_full_tracing ctxt (fn ctxt' =>
+  let
+    val id = Argo_Proof.string_of_proof_id proof_id
+    val ids = map (Argo_Proof.string_of_proof_id o Argo_Proof.id_of) proofs
+    val rule_string = Argo_Proof.string_of_rule rule
+  in full_tracing ctxt' ("  " ^ id ^ " <- " ^ space_implode " " ids ^ " . " ^ rule_string) end)
+
+fun replay_bottom_up (env as (ctxt, _, _)) proof thm_cache =
+  let
+    val (proof_id, rule, proofs) = Argo_Proof.dest proof
+    val (prems, thm_cache) = fold_map (with_cache (replay_bottom_up env)) proofs thm_cache
+    val _ = trace_step ctxt proof_id rule proofs
+  in (replay_rule env prems rule, thm_cache) end
+
+fun replay_proof env proof = with_cache (replay_bottom_up env) proof Thm_Cache.empty
+
+fun replay ctxt terms facts proof =
+  let
+    val env = (ctxt, Termtab.fold (Contab.update o swap) terms Contab.empty, facts)
+    val _ = tracing ctxt "replaying the proof"
+    val ({elapsed=t, ...}, ((thm, _), _)) = Timing.timing (replay_proof env) proof
+    val _ = tracing ctxt ("replayed the proof in " ^ string_of_int (Time.toMilliseconds t) ^ " ms")
+  in thm end
+
+
+(* normalizing goals *)
+
+fun instantiate_elim_rule thm =
+  let val ct = Drule.strip_imp_concl (Thm.cprop_of thm)
+  in
+    (case Thm.term_of ct of
+      @{const HOL.Trueprop} $ Var (_, @{typ HOL.bool}) =>
+        instantiate (Thm.dest_arg ct) @{cterm HOL.False} thm
+    | Var _ => instantiate ct @{cprop HOL.False} thm
+    | _ => thm)
+  end
+
+fun atomize_conv ctxt ct =
+  (case Thm.term_of ct of
+    @{const HOL.Trueprop} $ _ => Conv.all_conv
+  | @{const Pure.imp} $ _ $ _ =>
+      Conv.binop_conv (atomize_conv ctxt) then_conv
+      Conv.rewr_conv @{thm atomize_imp}
+  | Const (@{const_name Pure.eq}, _) $ _ $ _ =>
+      Conv.binop_conv (atomize_conv ctxt) then_conv
+      Conv.rewr_conv @{thm atomize_eq}
+  | Const (@{const_name Pure.all}, _) $ Abs _ =>
+      Conv.binder_conv (atomize_conv o snd) ctxt then_conv
+      Conv.rewr_conv @{thm atomize_all}
+  | _ => Conv.all_conv) ct
+
+fun normalize ctxt thm =
+  thm
+  |> instantiate_elim_rule
+  |> Conv.fconv_rule (Thm.beta_conversion true then_conv Thm.eta_conversion)
+  |> Drule.forall_intr_vars
+  |> Conv.fconv_rule (atomize_conv ctxt)
+
+
+(* prover, tactic and method *)
+
+datatype result = Satisfiable of term -> bool option | Unsatisfiable
+
+fun check props ctxt =
+  (case solve props ctxt of
+    (Proof _, ctxt') => (Unsatisfiable, ctxt')
+  | (Model model, ctxt') => (Satisfiable model, ctxt'))
+
+fun prove thms ctxt =
+  let val thms' = map (normalize ctxt) thms
+  in
+    (case solve (map Thm.prop_of thms') ctxt of
+      (Model _, ctxt') => (NONE, ctxt')
+    | (Proof (terms, proof), ctxt') => (SOME (replay ctxt' terms thms' proof), ctxt'))
+  end
+
+fun argo_tac ctxt thms =
+  CONVERSION (Conv.params_conv ~1 (K (Conv.concl_conv ~1
+    (Conv.try_conv (Conv.rewr_conv @{thm atomize_eq})))) ctxt)
+  THEN' Tactic.resolve_tac ctxt [@{thm ccontr}]
+  THEN' Subgoal.FOCUS (fn {context, prems, ...} =>
+    (case with_timeout context (prove (thms @ prems)) context of
+      (SOME thm, _) => Tactic.resolve_tac context [thm] 1
+    | (NONE, _) => Tactical.no_tac)) ctxt
+
+val _ =
+  Theory.setup (Method.setup @{binding argo}
+    (Scan.optional Attrib.thms [] >>
+      (fn thms => fn ctxt => METHOD (fn facts =>
+        HEADGOAL (argo_tac ctxt (thms @ facts)))))
+    "Applies the Argo prover")
+
+end