--- a/doc-src/TutorialI/Rules/Primes.thy Fri Nov 02 08:26:01 2007 +0100
+++ b/doc-src/TutorialI/Rules/Primes.thy Fri Nov 02 08:59:15 2007 +0100
@@ -4,11 +4,9 @@
(*Euclid's algorithm
This material now appears AFTER that of Forward.thy *)
theory Primes imports Main begin
-consts
- gcd :: "nat*nat \<Rightarrow> nat"
-recdef gcd "measure snd"
- "gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"
+fun gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
+ "gcd m n = (if n=0 then m else gcd n (m mod n))"
ML "Pretty.setmargin 64"
@@ -23,18 +21,18 @@
(*** Euclid's Algorithm ***)
-lemma gcd_0 [simp]: "gcd(m,0) = m"
+lemma gcd_0 [simp]: "gcd m 0 = m"
apply (simp);
done
-lemma gcd_non_0 [simp]: "0<n \<Longrightarrow> gcd(m,n) = gcd (n, m mod n)"
+lemma gcd_non_0 [simp]: "0<n \<Longrightarrow> gcd m n = gcd n (m mod n)"
apply (simp)
done;
declare gcd.simps [simp del];
(*gcd(m,n) divides m and n. The conjunctions don't seem provable separately*)
-lemma gcd_dvd_both: "(gcd(m,n) dvd m) \<and> (gcd(m,n) dvd n)"
+lemma gcd_dvd_both: "(gcd m n dvd m) \<and> (gcd m n dvd n)"
apply (induct_tac m n rule: gcd.induct)
--{* @{subgoals[display,indent=0,margin=65]} *}
apply (case_tac "n=0")
@@ -72,7 +70,7 @@
(*Maximality: for all m,n,k naturals,
if k divides m and k divides n then k divides gcd(m,n)*)
lemma gcd_greatest [rule_format]:
- "k dvd m \<longrightarrow> k dvd n \<longrightarrow> k dvd gcd(m,n)"
+ "k dvd m \<longrightarrow> k dvd n \<longrightarrow> k dvd gcd m n"
apply (induct_tac m n rule: gcd.induct)
apply (case_tac "n=0")
txt{*subgoals after the case tac
@@ -87,7 +85,7 @@
*}
(*just checking the claim that case_tac "n" works too*)
-lemma "k dvd m \<longrightarrow> k dvd n \<longrightarrow> k dvd gcd(m,n)"
+lemma "k dvd m \<longrightarrow> k dvd n \<longrightarrow> k dvd gcd m n"
apply (induct_tac m n rule: gcd.induct)
apply (case_tac "n")
apply (simp_all add: dvd_mod)
@@ -95,7 +93,7 @@
theorem gcd_greatest_iff [iff]:
- "(k dvd gcd(m,n)) = (k dvd m \<and> k dvd n)"
+ "(k dvd gcd m n) = (k dvd m \<and> k dvd n)"
by (blast intro!: gcd_greatest intro: dvd_trans)
@@ -107,7 +105,7 @@
(ALL d. d dvd m \<and> d dvd n \<longrightarrow> d dvd p)"
(*Function gcd yields the Greatest Common Divisor*)
-lemma is_gcd: "is_gcd (gcd(m,n)) m n"
+lemma is_gcd: "is_gcd (gcd m n) m n"
apply (simp add: is_gcd_def gcd_greatest);
done
@@ -133,12 +131,12 @@
\end{isabelle}
*};
-lemma gcd_assoc: "gcd(gcd(k,m),n) = gcd(k,gcd(m,n))"
+lemma gcd_assoc: "gcd (gcd k m) n = gcd k (gcd m n)"
apply (rule is_gcd_unique)
apply (rule is_gcd)
apply (simp add: is_gcd_def);
apply (blast intro: dvd_trans);
- done
+ done
text{*
\begin{isabelle}
@@ -152,12 +150,12 @@
*}
-lemma gcd_dvd_gcd_mult: "gcd(m,n) dvd gcd(k*m, n)"
+lemma gcd_dvd_gcd_mult: "gcd m n dvd gcd (k*m) n"
apply (blast intro: dvd_trans);
done
(*This is half of the proof (by dvd_anti_sym) of*)
-lemma gcd_mult_cancel: "gcd(k,n) = 1 \<Longrightarrow> gcd(k*m, n) = gcd(m,n)"
+lemma gcd_mult_cancel: "gcd k n = 1 \<Longrightarrow> gcd (k*m) n = gcd m n"
oops
end