--- a/src/HOL/Deriv.thy Fri Jan 04 21:49:06 2019 +0100
+++ b/src/HOL/Deriv.thy Fri Jan 04 23:22:53 2019 +0100
@@ -20,10 +20,10 @@
((\<lambda>y. ((f y - f (Lim F (\<lambda>x. x))) - f' (y - Lim F (\<lambda>x. x))) /\<^sub>R norm (y - Lim F (\<lambda>x. x))) \<longlongrightarrow> 0) F"
text \<open>
- Usually the filter @{term F} is @{term "at x within s"}. @{term "(f has_derivative D)
- (at x within s)"} means: @{term D} is the derivative of function @{term f} at point @{term x}
- within the set @{term s}. Where @{term s} is used to express left or right sided derivatives. In
- most cases @{term s} is either a variable or @{term UNIV}.
+ Usually the filter \<^term>\<open>F\<close> is \<^term>\<open>at x within s\<close>. \<^term>\<open>(f has_derivative D)
+ (at x within s)\<close> means: \<^term>\<open>D\<close> is the derivative of function \<^term>\<open>f\<close> at point \<^term>\<open>x\<close>
+ within the set \<^term>\<open>s\<close>. Where \<^term>\<open>s\<close> is used to express left or right sided derivatives. In
+ most cases \<^term>\<open>s\<close> is either a variable or \<^term>\<open>UNIV\<close>.
\<close>
text \<open>These are the only cases we'll care about, probably.\<close>
@@ -60,7 +60,7 @@
Global_Theory.add_thms_dynamic
(\<^binding>\<open>derivative_eq_intros\<close>,
fn context =>
- Named_Theorems.get (Context.proof_of context) @{named_theorems derivative_intros}
+ Named_Theorems.get (Context.proof_of context) \<^named_theorems>\<open>derivative_intros\<close>
|> map_filter eq_rule)
end
\<close>
@@ -510,7 +510,7 @@
subsection \<open>Uniqueness\<close>
text \<open>
-This can not generally shown for @{const has_derivative}, as we need to approach the point from
+This can not generally shown for \<^const>\<open>has_derivative\<close>, as we need to approach the point from
all directions. There is a proof in \<open>Analysis\<close> for \<open>euclidean_space\<close>.
\<close>
@@ -1107,7 +1107,7 @@
subsection \<open>Local extrema\<close>
-text \<open>If @{term "0 < f' x"} then @{term x} is Locally Strictly Increasing At The Right.\<close>
+text \<open>If \<^term>\<open>0 < f' x\<close> then \<^term>\<open>x\<close> is Locally Strictly Increasing At The Right.\<close>
lemma has_real_derivative_pos_inc_right:
fixes f :: "real \<Rightarrow> real"
@@ -1273,10 +1273,10 @@
by (force dest: lemma_interval_lt)
text \<open>Rolle's Theorem.
- If @{term f} is defined and continuous on the closed interval
+ If \<^term>\<open>f\<close> is defined and continuous on the closed interval
\<open>[a,b]\<close> and differentiable on the open interval \<open>(a,b)\<close>,
- and @{term "f a = f b"},
- then there exists \<open>x0 \<in> (a,b)\<close> such that @{term "f' x0 = 0"}\<close>
+ and \<^term>\<open>f a = f b\<close>,
+ then there exists \<open>x0 \<in> (a,b)\<close> such that \<^term>\<open>f' x0 = 0\<close>\<close>
theorem Rolle_deriv:
fixes f :: "real \<Rightarrow> real"
assumes "a < b"
@@ -1301,7 +1301,7 @@
then show ?thesis
proof cases
case 1
- \<comment> \<open>@{term f} attains its maximum within the interval\<close>
+ \<comment> \<open>\<^term>\<open>f\<close> attains its maximum within the interval\<close>
then obtain l where der: "DERIV f x :> l"
using derf differentiable_def real_differentiable_def by blast
obtain d where d: "0 < d" and bound: "\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
@@ -1321,7 +1321,7 @@
then show ?thesis
proof cases
case 1
- \<comment> \<open>@{term f} attains its minimum within the interval\<close>
+ \<comment> \<open>\<^term>\<open>f\<close> attains its minimum within the interval\<close>
then obtain l where der: "DERIV f x' :> l"
using derf differentiable_def real_differentiable_def by blast
from lemma_interval [OF 1]
@@ -1335,7 +1335,7 @@
by (metis has_derivative_unique has_field_derivative_def mult_zero_left)
next
case 2
- \<comment> \<open>@{term f} is constant throughout the interval\<close>
+ \<comment> \<open>\<^term>\<open>f\<close> is constant throughout the interval\<close>
then have fx': "f b = f x'" by (auto simp: fab)
from dense [OF \<open>a < b\<close>] obtain r where r: "a < r" "r < b" by blast
obtain d where d: "0 < d" and bound: "\<forall>y. \<bar>r - y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"