--- a/src/HOL/Nat.thy Fri Jan 04 21:49:06 2019 +0100
+++ b/src/HOL/Nat.thy Fri Jan 04 23:22:53 2019 +0100
@@ -142,8 +142,8 @@
ML \<open>
val nat_basic_lfp_sugar =
let
- val ctr_sugar = the (Ctr_Sugar.ctr_sugar_of_global @{theory} @{type_name nat});
- val recx = Logic.varify_types_global @{term rec_nat};
+ val ctr_sugar = the (Ctr_Sugar.ctr_sugar_of_global \<^theory> \<^type_name>\<open>nat\<close>);
+ val recx = Logic.varify_types_global \<^term>\<open>rec_nat\<close>;
val C = body_type (fastype_of recx);
in
{T = HOLogic.natT, fp_res_index = 0, C = C, fun_arg_Tsss = [[], [[HOLogic.natT, C]]],
@@ -153,7 +153,7 @@
setup \<open>
let
- fun basic_lfp_sugars_of _ [@{typ nat}] _ _ ctxt =
+ fun basic_lfp_sugars_of _ [\<^typ>\<open>nat\<close>] _ _ ctxt =
([], [0], [nat_basic_lfp_sugar], [], [], [], TrueI (*dummy*), [], false, ctxt)
| basic_lfp_sugars_of bs arg_Ts callers callssss ctxt =
BNF_LFP_Rec_Sugar.default_basic_lfp_sugars_of bs arg_Ts callers callssss ctxt;
@@ -261,7 +261,7 @@
lemma Suc_n_not_n: "Suc n \<noteq> n"
by (rule not_sym) (rule n_not_Suc_n)
-text \<open>A special form of induction for reasoning about @{term "m < n"} and @{term "m - n"}.\<close>
+text \<open>A special form of induction for reasoning about \<^term>\<open>m < n\<close> and \<^term>\<open>m - n\<close>.\<close>
lemma diff_induct:
assumes "\<And>x. P x 0"
and "\<And>y. P 0 (Suc y)"
@@ -464,7 +464,7 @@
by (subst mult_cancel1) simp
-subsection \<open>Orders on @{typ nat}\<close>
+subsection \<open>Orders on \<^typ>\<open>nat\<close>\<close>
subsubsection \<open>Operation definition\<close>
@@ -688,7 +688,7 @@
by simp (auto simp add: less_Suc_eq dest: Suc_lessD)
qed
-text \<open>Can be used with \<open>less_Suc_eq\<close> to get @{prop "n = m \<or> n < m"}.\<close>
+text \<open>Can be used with \<open>less_Suc_eq\<close> to get \<^prop>\<open>n = m \<or> n < m\<close>.\<close>
lemma not_less_eq: "\<not> m < n \<longleftrightarrow> n < Suc m"
by (simp only: not_less less_Suc_eq_le)
@@ -883,7 +883,7 @@
qed
text \<open>Addition is the inverse of subtraction:
- if @{term "n \<le> m"} then @{term "n + (m - n) = m"}.\<close>
+ if \<^term>\<open>n \<le> m\<close> then \<^term>\<open>n + (m - n) = m\<close>.\<close>
lemma add_diff_inverse_nat: "\<not> m < n \<Longrightarrow> n + (m - n) = m"
for m n :: nat
by (induct m n rule: diff_induct) simp_all
@@ -921,7 +921,7 @@
instance nat :: ordered_cancel_comm_monoid_diff ..
-subsubsection \<open>@{term min} and @{term max}\<close>
+subsubsection \<open>\<^term>\<open>min\<close> and \<^term>\<open>max\<close>\<close>
lemma mono_Suc: "mono Suc"
by (rule monoI) simp
@@ -989,7 +989,7 @@
(auto dest: mult_left_le_imp_le mult_left_less_imp_less le_less_trans)
-subsubsection \<open>Additional theorems about @{term "(\<le>)"}\<close>
+subsubsection \<open>Additional theorems about \<^term>\<open>(\<le>)\<close>\<close>
text \<open>Complete induction, aka course-of-values induction\<close>
@@ -1454,7 +1454,7 @@
with assms show "n * m \<le> n * q" by simp
qed
-text \<open>The lattice order on @{typ nat}.\<close>
+text \<open>The lattice order on \<^typ>\<open>nat\<close>.\<close>
instantiation nat :: distrib_lattice
begin
@@ -1702,7 +1702,7 @@
qed
-subsection \<open>Embedding of the naturals into any \<open>semiring_1\<close>: @{term of_nat}\<close>
+subsection \<open>Embedding of the naturals into any \<open>semiring_1\<close>: \<^term>\<open>of_nat\<close>\<close>
context semiring_1
begin
@@ -2345,7 +2345,7 @@
by (auto intro!: funpow_increasing simp: antimono_def)
-subsection \<open>The divides relation on @{typ nat}\<close>
+subsection \<open>The divides relation on \<^typ>\<open>nat\<close>\<close>
lemma dvd_1_left [iff]: "Suc 0 dvd k"
by (simp add: dvd_def)