--- a/src/ZF/Constructible/Separation.thy Fri Jan 04 21:49:06 2019 +0100
+++ b/src/ZF/Constructible/Separation.thy Fri Jan 04 23:22:53 2019 +0100
@@ -66,10 +66,10 @@
apply (rule collI, assumption)
done
-text\<open>As above, but typically @{term u} is a finite enumeration such as
- @{term "{a,b}"}; thus the new subgoal gets the assumption
- @{term "{a,b} \<subseteq> Lset(i)"}, which is logically equivalent to
- @{term "a \<in> Lset(i)"} and @{term "b \<in> Lset(i)"}.\<close>
+text\<open>As above, but typically \<^term>\<open>u\<close> is a finite enumeration such as
+ \<^term>\<open>{a,b}\<close>; thus the new subgoal gets the assumption
+ \<^term>\<open>{a,b} \<subseteq> Lset(i)\<close>, which is logically equivalent to
+ \<^term>\<open>a \<in> Lset(i)\<close> and \<^term>\<open>b \<in> Lset(i)\<close>.\<close>
lemma gen_separation_multi:
assumes reflection: "REFLECTS [P,Q]"
and Lu: "L(u)"
@@ -94,7 +94,7 @@
apply (rule gen_separation [OF Inter_Reflects], simp)
apply (rule DPow_LsetI)
txt\<open>I leave this one example of a manual proof. The tedium of manually
- instantiating @{term i}, @{term j} and @{term env} is obvious.\<close>
+ instantiating \<^term>\<open>i\<close>, \<^term>\<open>j\<close> and \<^term>\<open>env\<close> is obvious.\<close>
apply (rule ball_iff_sats)
apply (rule imp_iff_sats)
apply (rule_tac [2] i=1 and j=0 and env="[y,x,A]" in mem_iff_sats)
@@ -260,7 +260,7 @@
done
-subsection\<open>Separation for a Theorem about @{term "is_recfun"}\<close>
+subsection\<open>Separation for a Theorem about \<^term>\<open>is_recfun\<close>\<close>
lemma is_recfun_reflects:
"REFLECTS[\<lambda>x. \<exists>xa[L]. \<exists>xb[L].