src/HOL/AxClasses/Group/GroupDefs.ML
changeset 5069 3ea049f7979d
parent 4091 771b1f6422a8
child 9345 2f5f6824f888
--- a/src/HOL/AxClasses/Group/GroupDefs.ML	Mon Jun 22 17:13:09 1998 +0200
+++ b/src/HOL/AxClasses/Group/GroupDefs.ML	Mon Jun 22 17:26:46 1998 +0200
@@ -2,24 +2,24 @@
 
 (*this is really overkill - should be rather proven 'inline'*)
 
-goalw thy [times_bool_def] "(x * y) * z = x * (y * (z::bool))";
+Goalw [times_bool_def] "(x * y) * z = x * (y * (z::bool))";
 by (Fast_tac 1);
 qed "bool_assoc";
 
-goalw thy [times_bool_def, one_bool_def] "1 * x = (x::bool)";
+Goalw [times_bool_def, one_bool_def] "1 * x = (x::bool)";
 by (Fast_tac 1);
 qed "bool_left_unit";
 
-goalw thy [times_bool_def, one_bool_def] "x * 1 = (x::bool)";
+Goalw [times_bool_def, one_bool_def] "x * 1 = (x::bool)";
 by (Fast_tac 1);
 qed "bool_right_unit";
 
-goalw thy [times_bool_def, inverse_bool_def, one_bool_def]
+Goalw [times_bool_def, inverse_bool_def, one_bool_def]
   "inverse(x) * x = (1::bool)";
 by (Fast_tac 1);
 qed "bool_left_inverse";
 
-goalw thy [times_bool_def] "x * y = (y * (x::bool))";
+Goalw [times_bool_def] "x * y = (y * (x::bool))";
 by (Fast_tac 1);
 qed "bool_commut";
 
@@ -28,59 +28,59 @@
 
 val prod_ss = simpset_of Prod.thy;
 
-goalw thy [times_prod_def]
+Goalw [times_prod_def]
   "(x * y) * z = x * (y * (z::'a::semigroup*'b::semigroup))";
 by (simp_tac (prod_ss addsimps [assoc]) 1);
 qed "prod_assoc";
 
-goalw thy [times_prod_def, one_prod_def] "1 * x = (x::'a::monoid*'b::monoid)";
+Goalw [times_prod_def, one_prod_def] "1 * x = (x::'a::monoid*'b::monoid)";
 by (simp_tac (prod_ss addsimps [Monoid.left_unit]) 1);
 by (rtac (surjective_pairing RS sym) 1);
 qed "prod_left_unit";
 
-goalw thy [times_prod_def, one_prod_def] "x * 1 = (x::'a::monoid*'b::monoid)";
+Goalw [times_prod_def, one_prod_def] "x * 1 = (x::'a::monoid*'b::monoid)";
 by (simp_tac (prod_ss addsimps [Monoid.right_unit]) 1);
 by (rtac (surjective_pairing RS sym) 1);
 qed "prod_right_unit";
 
-goalw thy [times_prod_def, inverse_prod_def, one_prod_def]
+Goalw [times_prod_def, inverse_prod_def, one_prod_def]
   "inverse x * x = (1::'a::group*'b::group)";
 by (simp_tac (prod_ss addsimps [left_inverse]) 1);
 qed "prod_left_inverse";
 
-goalw thy [times_prod_def] "x * y = y * (x::'a::agroup*'b::agroup)";
+Goalw [times_prod_def] "x * y = y * (x::'a::agroup*'b::agroup)";
 by (simp_tac (prod_ss addsimps [commut]) 1);
 qed "prod_commut";
 
 
 (* function spaces *)
 
-goalw thy [times_fun_def] "(x * y) * z = x * (y * (z::'a => 'b::semigroup))";
+Goalw [times_fun_def] "(x * y) * z = x * (y * (z::'a => 'b::semigroup))";
 by (stac expand_fun_eq 1);
 by (rtac allI 1);
 by (rtac assoc 1);
 qed "fun_assoc";
 
-goalw thy [times_fun_def, one_fun_def] "1 * x = (x::'a => 'b::monoid)";
+Goalw [times_fun_def, one_fun_def] "1 * x = (x::'a => 'b::monoid)";
 by (stac expand_fun_eq 1);
 by (rtac allI 1);
 by (rtac Monoid.left_unit 1);
 qed "fun_left_unit";
 
-goalw thy [times_fun_def, one_fun_def] "x * 1 = (x::'a => 'b::monoid)";
+Goalw [times_fun_def, one_fun_def] "x * 1 = (x::'a => 'b::monoid)";
 by (stac expand_fun_eq 1);
 by (rtac allI 1);
 by (rtac Monoid.right_unit 1);
 qed "fun_right_unit";
 
-goalw thy [times_fun_def, inverse_fun_def, one_fun_def]
+Goalw [times_fun_def, inverse_fun_def, one_fun_def]
   "inverse x * x = (1::'a => 'b::group)";
 by (stac expand_fun_eq 1);
 by (rtac allI 1);
 by (rtac left_inverse 1);
 qed "fun_left_inverse";
 
-goalw thy [times_fun_def] "x * y = y * (x::'a => 'b::agroup)";
+Goalw [times_fun_def] "x * y = y * (x::'a => 'b::agroup)";
 by (stac expand_fun_eq 1);
 by (rtac allI 1);
 by (rtac commut 1);