--- a/src/HOL/Finite.ML Wed Oct 04 13:01:05 1995 +0100
+++ b/src/HOL/Finite.ML Wed Oct 04 13:10:03 1995 +0100
@@ -33,13 +33,13 @@
(** Simplification for Fin **)
-val Fin_ss = set_ss addsimps Fin.intrs;
+Addsimps Fin.intrs;
(*The union of two finite sets is finite*)
val major::prems = goal Finite.thy
"[| F: Fin(A); G: Fin(A) |] ==> F Un G : Fin(A)";
by (rtac (major RS Fin_induct) 1);
-by (ALLGOALS (asm_simp_tac (Fin_ss addsimps (prems@[Un_insert_left]))));
+by (ALLGOALS (asm_simp_tac (!simpset addsimps (prems @ [Un_insert_left]))));
qed "Fin_UnI";
(*Every subset of a finite set is finite*)
@@ -48,18 +48,19 @@
rtac mp, etac spec,
rtac subs]);
by (rtac (fin RS Fin_induct) 1);
-by (simp_tac (Fin_ss addsimps [subset_Un_eq]) 1);
+by (simp_tac (!simpset addsimps [subset_Un_eq]) 1);
by (safe_tac (set_cs addSDs [subset_insert_iff RS iffD1]));
by (eres_inst_tac [("t","C")] (insert_Diff RS subst) 2);
-by (ALLGOALS (asm_simp_tac Fin_ss));
+by (ALLGOALS Asm_simp_tac);
qed "Fin_subset";
(*The image of a finite set is finite*)
val major::_ = goal Finite.thy
"F: Fin(A) ==> h``F : Fin(h``A)";
by (rtac (major RS Fin_induct) 1);
-by (simp_tac Fin_ss 1);
-by (asm_simp_tac (set_ss addsimps [image_eqI RS Fin.insertI, image_insert]) 1);
+by (Simp_tac 1);
+by (asm_simp_tac
+ (!simpset addsimps [image_eqI RS Fin.insertI, image_insert]) 1);
qed "Fin_imageI";
val major::prems = goal Finite.thy
@@ -70,7 +71,7 @@
by (rtac (major RS Fin_induct) 1);
by (rtac (Diff_insert RS ssubst) 2);
by (ALLGOALS (asm_simp_tac
- (Fin_ss addsimps (prems@[Diff_subset RS Fin_subset]))));
+ (!simpset addsimps (prems@[Diff_subset RS Fin_subset]))));
qed "Fin_empty_induct_lemma";
val prems = goal Finite.thy