src/HOL/ex/Comb.ML
changeset 3125 3f0ab2c306f7
parent 3124 1c0dfa7ebb72
child 3126 feb7a5d01c1e
--- a/src/HOL/ex/Comb.ML	Wed May 07 13:50:52 1997 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,179 +0,0 @@
-(*  Title:      HOL/ex/comb.ML
-    ID:         $Id$
-    Author:     Lawrence C Paulson
-    Copyright   1996  University of Cambridge
-
-Combinatory Logic example: the Church-Rosser Theorem
-Curiously, combinators do not include free variables.
-
-Example taken from
-    J. Camilleri and T. F. Melham.
-    Reasoning with Inductively Defined Relations in the HOL Theorem Prover.
-    Report 265, University of Cambridge Computer Laboratory, 1992.
-
-HOL system proofs may be found in
-/usr/groups/theory/hvg-aftp/contrib/rule-induction/cl.ml
-*)
-
-open Comb;
-
-(*** Reflexive/Transitive closure preserves the Church-Rosser property 
-     So does the Transitive closure; use r_into_trancl instead of rtrancl_refl
-***)
-
-val [_, spec_mp] = [spec] RL [mp];
-
-(*Strip lemma.  The induction hyp is all but the last diamond of the strip.*)
-goalw Comb.thy [diamond_def]
-    "!!r. [| diamond(r);  (x,y):r^* |] ==> \ 
-\         ALL y'. (x,y'):r --> (EX z. (y',z): r^* & (y,z): r)";
-by (etac rtrancl_induct 1);
-by (Blast_tac 1);
-by (slow_best_tac (set_cs addIs [r_into_rtrancl RSN (2, rtrancl_trans)]
-                           addSDs [spec_mp]) 1);
-val diamond_strip_lemmaE = result() RS spec RS mp RS exE;
-
-val [major] = goal Comb.thy "diamond(r) ==> diamond(r^*)";
-by (rewtac diamond_def);  (*unfold only in goal, not in premise!*)
-by (rtac (impI RS allI RS allI) 1);
-by (etac rtrancl_induct 1);
-by (Blast_tac 1);
-by (slow_best_tac  (*Seems to be a brittle, undirected search*)
-    (set_cs addIs [r_into_rtrancl RSN (2, rtrancl_trans)]
-            addEs [major RS diamond_strip_lemmaE]) 1);
-qed "diamond_rtrancl";
-
-
-(*** Results about Contraction ***)
-
-(*Derive a case for each combinator constructor*)
-val K_contractE = contract.mk_cases comb.simps "K -1-> z";
-val S_contractE = contract.mk_cases comb.simps "S -1-> z";
-val Ap_contractE = contract.mk_cases comb.simps "x#y -1-> z";
-
-AddSIs [contract.K, contract.S];
-AddIs  [contract.Ap1, contract.Ap2];
-AddSEs [K_contractE, S_contractE, Ap_contractE];
-Unsafe_Addss  (!simpset);
-
-goalw Comb.thy [I_def] "!!z. I -1-> z ==> P";
-by (Blast_tac 1);
-qed "I_contract_E";
-AddSEs [I_contract_E];
-
-goal Comb.thy "!!x z. K#x -1-> z ==> (EX x'. z = K#x' & x -1-> x')";
-by (Blast_tac 1);
-qed "K1_contractD";
-AddSEs [K1_contractD];
-
-goal Comb.thy "!!x z. x ---> y ==> x#z ---> y#z";
-by (etac rtrancl_induct 1);
-by (ALLGOALS (blast_tac (!claset addIs [r_into_rtrancl, rtrancl_trans])));
-qed "Ap_reduce1";
-
-goal Comb.thy "!!x z. x ---> y ==> z#x ---> z#y";
-by (etac rtrancl_induct 1);
-by (ALLGOALS (blast_tac (!claset addIs [r_into_rtrancl, rtrancl_trans])));
-qed "Ap_reduce2";
-
-(** Counterexample to the diamond property for -1-> **)
-
-goal Comb.thy "K#I#(I#I) -1-> I";
-by (rtac contract.K 1);
-qed "KIII_contract1";
-
-goalw Comb.thy [I_def] "K#I#(I#I) -1-> K#I#((K#I)#(K#I))";
-by (Blast_tac 1);
-qed "KIII_contract2";
-
-goal Comb.thy "K#I#((K#I)#(K#I)) -1-> I";
-by (Blast_tac 1);
-qed "KIII_contract3";
-
-goalw Comb.thy [diamond_def] "~ diamond(contract)";
-by (blast_tac (!claset addIs [KIII_contract1,KIII_contract2,KIII_contract3]) 1);
-qed "not_diamond_contract";
-
-
-
-(*** Results about Parallel Contraction ***)
-
-(*Derive a case for each combinator constructor*)
-val K_parcontractE = parcontract.mk_cases comb.simps "K =1=> z";
-val S_parcontractE = parcontract.mk_cases comb.simps "S =1=> z";
-val Ap_parcontractE = parcontract.mk_cases comb.simps "x#y =1=> z";
-
-AddIs  parcontract.intrs;
-AddSEs [K_parcontractE, S_parcontractE,Ap_parcontractE];
-Unsafe_Addss  (!simpset);
-
-(*** Basic properties of parallel contraction ***)
-
-goal Comb.thy "!!x z. K#x =1=> z ==> (EX x'. z = K#x' & x =1=> x')";
-by (Blast_tac 1);
-qed "K1_parcontractD";
-AddSDs [K1_parcontractD];
-
-goal Comb.thy "!!x z. S#x =1=> z ==> (EX x'. z = S#x' & x =1=> x')";
-by (Blast_tac 1);
-qed "S1_parcontractD";
-AddSDs [S1_parcontractD];
-
-goal Comb.thy
- "!!x y z. S#x#y =1=> z ==> (EX x' y'. z = S#x'#y' & x =1=> x' & y =1=> y')";
-by (Blast_tac 1);
-qed "S2_parcontractD";
-AddSDs [S2_parcontractD];
-
-(*The rules above are not essential but make proofs much faster*)
-
-
-(*Church-Rosser property for parallel contraction*)
-goalw Comb.thy [diamond_def] "diamond parcontract";
-by (rtac (impI RS allI RS allI) 1);
-by (etac parcontract.induct 1 THEN prune_params_tac);
-by (Step_tac 1);
-by (ALLGOALS Blast_tac);
-qed "diamond_parcontract";
-
-
-(*** Equivalence of x--->y and x===>y ***)
-
-goal Comb.thy "contract <= parcontract";
-by (rtac subsetI 1);
-by (split_all_tac 1);
-by (etac contract.induct 1);
-by (ALLGOALS Blast_tac);
-qed "contract_subset_parcontract";
-
-(*Reductions: simply throw together reflexivity, transitivity and
-  the one-step reductions*)
-
-AddIs [Ap_reduce1, Ap_reduce2, r_into_rtrancl, rtrancl_trans];
-
-(*Example only: not used*)
-goalw Comb.thy [I_def] "I#x ---> x";
-by (Blast_tac 1);
-qed "reduce_I";
-
-goal Comb.thy "parcontract <= contract^*";
-by (rtac subsetI 1);
-by (split_all_tac 1);
-by (etac parcontract.induct 1 THEN prune_params_tac);
-by (ALLGOALS Blast_tac);
-qed "parcontract_subset_reduce";
-
-goal Comb.thy "contract^* = parcontract^*";
-by (REPEAT 
-    (resolve_tac [equalityI, 
-                  contract_subset_parcontract RS rtrancl_mono, 
-                  parcontract_subset_reduce RS rtrancl_subset_rtrancl] 1));
-qed "reduce_eq_parreduce";
-
-goal Comb.thy "diamond(contract^*)";
-by (simp_tac (!simpset addsimps [reduce_eq_parreduce, diamond_rtrancl, 
-                                 diamond_parcontract]) 1);
-qed "diamond_reduce";
-
-
-writeln"Reached end of file.";