src/HOLCF/IOA/meta_theory/CompoTraces.thy
changeset 3275 3f53f2c876f4
parent 3071 981258186b71
child 3521 bdc51b4c6050
--- a/src/HOLCF/IOA/meta_theory/CompoTraces.thy	Wed May 21 11:27:32 1997 +0200
+++ b/src/HOLCF/IOA/meta_theory/CompoTraces.thy	Wed May 21 15:08:52 1997 +0200
@@ -1,5 +1,5 @@
 (*  Title:      HOLCF/IOA/meta_theory/CompoTraces.thy
-    ID:        
+    ID:         $Id$
     Author:     Olaf M"uller
     Copyright   1996  TU Muenchen
 
@@ -53,38 +53,11 @@
 
 rules
 
-(* FIX: x:actions S is further assumption, see Asig.ML: how to fulfill this in proofs ? *)
-not_ext_is_int_FIX
-  "[|is_asig S|] ==> (x~:externals S) = (x: internals S)"
-
-(* FIX: should be more general , something like subst *)
-lemma12
-"[| f << (g x) ; (x= (h x)) |] ==> f << g (h x)"
-
-(* FIX: as above, should be done more intelligent *)
-lemma22
-"[| (f x) = y >> g ; x = h x |] ==> (f (h x)) = y >> g"
-
-Finite_Conc
-  "Finite (x @@ y) = (Finite x & Finite y)"
 
 finiteR_mksch
   "Finite (mksch A B`tr`x`y) --> Finite tr"
 
-finiteL_mksch
-  "[| Finite tr; 
-   Filter (%a. a:ext A)`x = Filter (%a. a:act A)`tr;
-   Filter (%a. a:ext B)`y = Filter (%a. a:actB)`tr;
-   Forall (%x. x:ext (A||B)) tr |]
-   ==> Finite (mksch A B`tr`x`y)"
 
-reduce_mksch
-  "[| Finite bs; Forall (%x. x:act B & x~:act A) bs;
-      Filter (%a. a:ext B)`y = Filter (%a. a:act B)`(bs @@ z) |] 
-  ==> ? y1 y2.  (mksch A B`(bs @@ z)`x`y) = (y1 @@ (mksch A B`z`x`y2)) &
-                Forall (%x. x:act B & x~:act A) y1 &
-                Finite y1 & y = (y1 @@ y2) & 
-                Filter (%a. a:ext B)`y1 = bs"
 
 end