src/HOL/Enum.thy
 changeset 47231 3ff8c79a9e2f parent 47221 7205eb4a0a05 parent 47230 6584098d5378 child 48123 104e5fccea12
```--- a/src/HOL/Enum.thy	Fri Mar 30 17:21:36 2012 +0200
+++ b/src/HOL/Enum.thy	Fri Mar 30 17:25:34 2012 +0200
@@ -152,7 +152,8 @@
from length map_of_zip_enum_is_Some obtain y1 y2
where "map_of (zip (enum \<Colon> 'a list) xs) x = Some y1"
and "map_of (zip (enum \<Colon> 'a list) ys) x = Some y2" by blast
-    moreover from map_of have "the (map_of (zip (enum \<Colon> 'a\<Colon>enum list) xs) x) = the (map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x)"
+    moreover from map_of
+      have "the (map_of (zip (enum \<Colon> 'a\<Colon>enum list) xs) x) = the (map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x)"
by (auto dest: fun_cong)
ultimately show "map_of (zip (enum \<Colon> 'a\<Colon>enum list) xs) x = map_of (zip (enum \<Colon> 'a\<Colon>enum list) ys) x"
by simp
@@ -832,7 +833,7 @@
by (rule finite_imageD)
then show False by simp
qed
-  then guess n .. note n = this
+  then obtain n where n: "f n = f (Suc n)" ..
def N \<equiv> "LEAST n. f n = f (Suc n)"
have N: "f N = f (Suc N)"
unfolding N_def using n by (rule LeastI)
@@ -921,13 +922,13 @@
proof
fix x
assume "x : acc r"
-  from this have "\<exists> n. x : bacc r n"
-  proof (induct x arbitrary: n rule: acc.induct)
+  then have "\<exists> n. x : bacc r n"
+  proof (induct x arbitrary: rule: acc.induct)
case (accI x)
-    from accI have "\<forall> y. \<exists> n. (y, x) \<in> r --> y : bacc r n" by simp
-    from choice[OF this] guess n .. note n = this
-    have "\<exists> n. \<forall>y. (y, x) : r --> y : bacc r n"
-    proof (safe intro!: exI[of _ "Max ((%(y,x). n y)`r)"])
+    then have "\<forall>y. \<exists> n. (y, x) \<in> r --> y : bacc r n" by simp
+    from choice[OF this] obtain n where n: "\<forall>y. (y, x) \<in> r \<longrightarrow> y \<in> bacc r (n y)" ..
+    obtain n where "\<And>y. (y, x) : r \<Longrightarrow> y : bacc r n"
+    proof
fix y assume y: "(y, x) : r"
with n have "y : bacc r (n y)" by auto
moreover have "n y <= Max ((%(y, x). n y) ` r)"
@@ -935,11 +936,10 @@
note bacc_mono[OF this, of r]
ultimately show "y : bacc r (Max ((%(y, x). n y) ` r))" by auto
qed
-    from this guess n ..
-    from this show ?case
+    then show ?case
by (auto simp add: Let_def intro!: exI[of _ "Suc n"])
qed
-  thus "x : (UN n. bacc r n)" by auto
+  then show "x : (UN n. bacc r n)" by auto
qed

lemma acc_bacc_eq: "acc ((set xs) :: (('a :: enum) * 'a) set) = bacc (set xs) (card (UNIV :: 'a set))"```