changeset 70097 | 4005298550a6 |
parent 70045 | 7b6add80e3a5 |
child 70128 | f2f797260010 |
--- a/src/HOL/Groups_Big.thy Tue Apr 09 21:05:48 2019 +0100 +++ b/src/HOL/Groups_Big.thy Wed Apr 10 13:34:55 2019 +0100 @@ -106,6 +106,11 @@ ultimately show ?thesis by simp qed +lemma Int_Diff: + assumes "finite A" + shows "F g A = F g (A \<inter> B) \<^bold>* F g (A - B)" + by (subst subset_diff [where B = "A - B"]) (auto simp: Diff_Diff_Int assms) + lemma setdiff_irrelevant: assumes "finite A" shows "F g (A - {x. g x = z}) = F g A"