src/HOL/Series.thy
changeset 70097 4005298550a6
parent 69593 3dda49e08b9d
child 70113 c8deb8ba6d05
--- a/src/HOL/Series.thy	Tue Apr 09 21:05:48 2019 +0100
+++ b/src/HOL/Series.thy	Wed Apr 10 13:34:55 2019 +0100
@@ -305,7 +305,7 @@
     unfolding lessThan_Suc_eq_insert_0
     by (simp add: ac_simps sum_atLeast1_atMost_eq image_Suc_lessThan)
   ultimately show ?thesis
-    by (auto simp: sums_def simp del: sum_lessThan_Suc intro: LIMSEQ_Suc_iff[THEN iffD1])
+    by (auto simp: sums_def simp del: sum.lessThan_Suc intro: LIMSEQ_Suc_iff[THEN iffD1])
 qed
 
 lemma sums_add: "f sums a \<Longrightarrow> g sums b \<Longrightarrow> (\<lambda>n. f n + g n) sums (a + b)"
@@ -460,7 +460,7 @@
   apply (drule summable_iff_convergent [THEN iffD1])
   apply (drule convergent_Cauchy)
   apply (simp only: Cauchy_iff LIMSEQ_iff)
-  by (metis add.commute add_diff_cancel_right' diff_zero le_SucI sum_lessThan_Suc)
+  by (metis add.commute add_diff_cancel_right' diff_zero le_SucI sum.lessThan_Suc)
 
 lemma summable_imp_convergent: "summable f \<Longrightarrow> convergent f"
   by (force dest!: summable_LIMSEQ_zero simp: convergent_def)