src/HOL/ex/Bit_Lists.thy
changeset 71042 400e9512f1d3
parent 70926 b4564de51fa7
child 71094 a197532693a5
--- a/src/HOL/ex/Bit_Lists.thy	Tue Nov 05 19:15:00 2019 +0100
+++ b/src/HOL/ex/Bit_Lists.thy	Mon Nov 04 20:38:15 2019 +0000
@@ -5,31 +5,10 @@
 
 theory Bit_Lists
   imports
-    Main
-    "HOL-Library.Boolean_Algebra"
-begin
-
-context ab_group_add
+    Bit_Operations
 begin
 
-lemma minus_diff_commute:
-  "- b - a = - a - b"
-  by (simp only: diff_conv_add_uminus add.commute)
-
-end
-
-
-subsection \<open>Bit representations\<close>
-
-subsubsection \<open>Mere syntactic bit representation\<close>
-
-class bit_representation =
-  fixes bits_of :: "'a \<Rightarrow> bool list"
-    and of_bits :: "bool list \<Rightarrow> 'a"
-  assumes of_bits_of [simp]: "of_bits (bits_of a) = a"
-
-
-subsubsection \<open>Algebraic bit representation\<close>
+subsection \<open>Fragments of algebraic bit representations\<close>
 
 context comm_semiring_1
 begin
@@ -57,7 +36,7 @@
     simp_all add: algebra_simps)
 
 lemma unsigned_of_bits_take [simp]:
-  "unsigned_of_bits (take n bs) = take_bit n (unsigned_of_bits bs)"
+  "unsigned_of_bits (take n bs) = Parity.take_bit n (unsigned_of_bits bs)"
 proof (induction bs arbitrary: n)
   case Nil
   then show ?case
@@ -69,7 +48,7 @@
 qed
 
 lemma unsigned_of_bits_drop [simp]:
-  "unsigned_of_bits (drop n bs) = drop_bit n (unsigned_of_bits bs)"
+  "unsigned_of_bits (drop n bs) = Parity.drop_bit n (unsigned_of_bits bs)"
 proof (induction bs arbitrary: n)
   case Nil
   then show ?case
@@ -80,10 +59,44 @@
     by (cases n) simp_all
 qed
 
+primrec n_bits_of :: "nat \<Rightarrow> 'a \<Rightarrow> bool list"
+  where
+    "n_bits_of 0 a = []"
+  | "n_bits_of (Suc n) a = odd a # n_bits_of n (a div 2)"
+
+lemma n_bits_of_eq_iff:
+  "n_bits_of n a = n_bits_of n b \<longleftrightarrow> Parity.take_bit n a = Parity.take_bit n b"
+  apply (induction n arbitrary: a b)
+   apply (auto elim!: evenE oddE)
+   apply (metis dvd_triv_right even_plus_one_iff)
+  apply (metis dvd_triv_right even_plus_one_iff)
+  done
+
+lemma take_n_bits_of [simp]:
+  "take m (n_bits_of n a) = n_bits_of (min m n) a"
+proof -
+  define q and v and w where "q = min m n" and "v = m - q" and "w = n - q"
+  then have "v = 0 \<or> w = 0"
+    by auto
+  then have "take (q + v) (n_bits_of (q + w) a) = n_bits_of q a"
+    by (induction q arbitrary: a) auto
+  with q_def v_def w_def show ?thesis
+    by simp
+qed
+
+lemma unsigned_of_bits_n_bits_of [simp]:
+  "unsigned_of_bits (n_bits_of n a) = Parity.take_bit n a"
+  by (induction n arbitrary: a) (simp_all add: ac_simps)
+
 end
 
 
-subsubsection \<open>Instances\<close>
+subsection \<open>Syntactic bit representation\<close>
+
+class bit_representation =
+  fixes bits_of :: "'a \<Rightarrow> bool list"
+    and of_bits :: "bool list \<Rightarrow> 'a"
+  assumes of_bits_of [simp]: "of_bits (bits_of a) = a"
 
 text \<open>Unclear whether a \<^typ>\<open>bool\<close> instantiation is needed or not\<close>
 
@@ -216,7 +229,7 @@
   by (auto simp add: of_bits_int_def)
 
 lemma of_bits_drop [simp]:
-  "of_bits (drop n bs) = drop_bit n (of_bits bs :: int)"
+  "of_bits (drop n bs) = Parity.drop_bit n (of_bits bs :: int)"
     if "n < length bs"
 using that proof (induction bs arbitrary: n)
   case Nil
@@ -240,140 +253,47 @@
 
 end
 
-
-subsection \<open>Syntactic bit operations\<close>
+lemma unsigned_of_bits_eq_of_bits:
+  "unsigned_of_bits bs = (of_bits (bs @ [False]) :: int)"
+  by (simp add: of_bits_int_def)
 
-class bit_operations = bit_representation +
-  fixes not :: "'a \<Rightarrow> 'a"  ("NOT")
-    and "and" :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixr "AND" 64)
-    and or :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixr "OR"  59)
-    and xor :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"  (infixr "XOR" 59)
-    and shift_left :: "'a \<Rightarrow> nat \<Rightarrow> 'a"  (infixl "<<" 55)
-    and shift_right :: "'a \<Rightarrow> nat \<Rightarrow> 'a"  (infixl ">>" 55)
-  assumes not_eq: "not = of_bits \<circ> map Not \<circ> bits_of"
-    and and_eq: "length bs = length cs \<Longrightarrow>
-      of_bits bs AND of_bits cs = of_bits (map2 (\<and>) bs cs)"
-    and semilattice_and: "semilattice (AND)"
-    and or_eq: "length bs = length cs \<Longrightarrow>
-      of_bits bs OR of_bits cs = of_bits (map2 (\<or>) bs cs)"
-    and semilattice_or: "semilattice (OR)"
-    and xor_eq: "length bs = length cs \<Longrightarrow>
-      of_bits bs XOR of_bits cs = of_bits (map2 (\<noteq>) bs cs)"
-    and abel_semigroup_xor: "abel_semigroup (XOR)"
-    and shift_right_eq: "a << n = of_bits (replicate n False @ bits_of a)"
-    and shift_left_eq: "n < length (bits_of a) \<Longrightarrow> a >> n = of_bits (drop n (bits_of a))"
+instantiation word :: (len) bit_representation
 begin
 
-text \<open>
-  We want the bitwise operations to bind slightly weaker
-  than \<open>+\<close> and \<open>-\<close>, but \<open>~~\<close> to
-  bind slightly stronger than \<open>*\<close>.
-\<close>
+lift_definition bits_of_word :: "'a word \<Rightarrow> bool list"
+  is "n_bits_of LENGTH('a)"
+  by (simp add: n_bits_of_eq_iff)
 
-sublocale "and": semilattice "(AND)"
-  by (fact semilattice_and)
+lift_definition of_bits_word :: "bool list \<Rightarrow> 'a word"
+  is unsigned_of_bits .
 
-sublocale or: semilattice "(OR)"
-  by (fact semilattice_or)
-
-sublocale xor: abel_semigroup "(XOR)"
-  by (fact abel_semigroup_xor)
+instance proof
+  fix a :: "'a word"
+  show "of_bits (bits_of a) = a"
+    by transfer simp
+qed
 
 end
 
 
-subsubsection \<open>Instance \<^typ>\<open>nat\<close>\<close>
-
-locale zip_nat = single: abel_semigroup f
-    for f :: "bool \<Rightarrow> bool \<Rightarrow> bool"  (infixl "\<^bold>*" 70) +
-  assumes end_of_bits: "\<not> False \<^bold>* False"
-begin
-
-lemma False_P_imp:
-  "False \<^bold>* True \<and> P" if "False \<^bold>* P"
-  using that end_of_bits by (cases P) simp_all
-
-function F :: "nat \<Rightarrow> nat \<Rightarrow> nat"  (infixl "\<^bold>\<times>" 70)
-  where "m \<^bold>\<times> n = (if m = 0 \<and> n = 0 then 0
-    else of_bool (odd m \<^bold>* odd n) + (m div 2) \<^bold>\<times> (n div 2) * 2)"
-  by auto
-
-termination
-  by (relation "measure (case_prod (+))") auto
-
-lemma zero_left_eq:
-  "0 \<^bold>\<times> n = of_bool (False \<^bold>* True) * n"
-  by (induction n rule: nat_bit_induct) (simp_all add: end_of_bits)
-
-lemma zero_right_eq:
-  "m \<^bold>\<times> 0 = of_bool (True \<^bold>* False) * m"
-  by (induction m rule: nat_bit_induct) (simp_all add: end_of_bits)
-
-lemma simps [simp]:
-  "0 \<^bold>\<times> 0 = 0"
-  "0 \<^bold>\<times> n = of_bool (False \<^bold>* True) * n"
-  "m \<^bold>\<times> 0 = of_bool (True \<^bold>* False) * m"
-  "m > 0 \<Longrightarrow> n > 0 \<Longrightarrow> m \<^bold>\<times> n = of_bool (odd m \<^bold>* odd n) + (m div 2) \<^bold>\<times> (n div 2) * 2"
-  by (simp_all only: zero_left_eq zero_right_eq) simp
-
-lemma rec:
-  "m \<^bold>\<times> n = of_bool (odd m \<^bold>* odd n) + (m div 2) \<^bold>\<times> (n div 2) * 2"
-  by (cases "m = 0 \<and> n = 0") (auto simp add: end_of_bits)
-
-declare F.simps [simp del]
+subsection \<open>Bit representations with bit operations\<close>
 
-sublocale abel_semigroup F
-proof
-  show "m \<^bold>\<times> n \<^bold>\<times> q = m \<^bold>\<times> (n \<^bold>\<times> q)" for m n q :: nat
-  proof (induction m arbitrary: n q rule: nat_bit_induct)
-    case zero
-    show ?case
-      by simp
-  next
-    case (even m)
-    with rec [of "2 * m"] rec [of _ q] show ?case
-      by (cases "even n") (auto dest: False_P_imp)
-  next
-    case (odd m)
-    with rec [of "Suc (2 * m)"] rec [of _ q] show ?case
-      by (cases "even n"; cases "even q")
-        (auto dest: False_P_imp simp add: ac_simps)
-  qed
-  show "m \<^bold>\<times> n = n \<^bold>\<times> m" for m n :: nat
-  proof (induction m arbitrary: n rule: nat_bit_induct)
-    case zero
-    show ?case
-      by (simp add: ac_simps)
-  next
-    case (even m)
-    with rec [of "2 * m" n] rec [of n "2 * m"] show ?case
-      by (simp add: ac_simps)
-  next
-    case (odd m)
-    with rec [of "Suc (2 * m)" n] rec [of n "Suc (2 * m)"] show ?case
-      by (simp add: ac_simps)
-  qed
-qed
+class semiring_bit_representation = semiring_bit_operations + bit_representation +
+  assumes and_eq: "length bs = length cs \<Longrightarrow>
+      of_bits bs AND of_bits cs = of_bits (map2 (\<and>) bs cs)"
+    and or_eq: "length bs = length cs \<Longrightarrow>
+      of_bits bs OR of_bits cs = of_bits (map2 (\<or>) bs cs)"
+    and xor_eq: "length bs = length cs \<Longrightarrow>
+      of_bits bs XOR of_bits cs = of_bits (map2 (\<noteq>) bs cs)"
+    and shift_bit_eq: "shift_bit n a = of_bits (replicate n False @ bits_of a)"
+    and drop_bit_eq: "n < length (bits_of a) \<Longrightarrow> drop_bit n a = of_bits (drop n (bits_of a))"
 
-lemma self [simp]:
-  "n \<^bold>\<times> n = of_bool (True \<^bold>* True) * n"
-  by (induction n rule: nat_bit_induct) (simp_all add: end_of_bits)
+class ring_bit_representation = ring_bit_operations + semiring_bit_representation +
+  assumes not_eq: "not = of_bits \<circ> map Not \<circ> bits_of"
 
-lemma even_iff [simp]:
-  "even (m \<^bold>\<times> n) \<longleftrightarrow> \<not> (odd m \<^bold>* odd n)"
-proof (induction m arbitrary: n rule: nat_bit_induct)
-  case zero
-  show ?case
-    by (cases "even n") (simp_all add: end_of_bits)
-next
-  case (even m)
-  then show ?case
-    by (simp add: rec [of "2 * m"])
-next
-  case (odd m)
-  then show ?case
-    by (simp add: rec [of "Suc (2 * m)"])
-qed
+
+context zip_nat
+begin
 
 lemma of_bits:
   "of_bits bs \<^bold>\<times> of_bits cs = (of_bits (map2 (\<^bold>*) bs cs) :: nat)"
@@ -391,366 +311,15 @@
 
 end
 
-instantiation nat :: bit_operations
-begin
-
-definition not_nat :: "nat \<Rightarrow> nat"
-  where "not_nat = of_bits \<circ> map Not \<circ> bits_of"
-
-global_interpretation and_nat: zip_nat "(\<and>)"
-  defines and_nat = and_nat.F
-  by standard auto
-
-global_interpretation and_nat: semilattice "(AND) :: nat \<Rightarrow> nat \<Rightarrow> nat"
-proof (rule semilattice.intro, fact and_nat.abel_semigroup_axioms, standard)
-  show "n AND n = n" for n :: nat
-    by (simp add: and_nat.self)
-qed
-
-declare and_nat.simps [simp] \<comment> \<open>inconsistent declaration handling by
-  \<open>global_interpretation\<close> in \<open>instantiation\<close>\<close>
-
-lemma zero_nat_and_eq [simp]:
-  "0 AND n = 0" for n :: nat
-  by simp
-
-lemma and_zero_nat_eq [simp]:
-  "n AND 0 = 0" for n :: nat
-  by simp
-
-global_interpretation or_nat: zip_nat "(\<or>)"
-  defines or_nat = or_nat.F
-  by standard auto
-
-global_interpretation or_nat: semilattice "(OR) :: nat \<Rightarrow> nat \<Rightarrow> nat"
-proof (rule semilattice.intro, fact or_nat.abel_semigroup_axioms, standard)
-  show "n OR n = n" for n :: nat
-    by (simp add: or_nat.self)
-qed
-
-declare or_nat.simps [simp] \<comment> \<open>inconsistent declaration handling by
-  \<open>global_interpretation\<close> in \<open>instantiation\<close>\<close>
-
-lemma zero_nat_or_eq [simp]:
-  "0 OR n = n" for n :: nat
-  by simp
-
-lemma or_zero_nat_eq [simp]:
-  "n OR 0 = n" for n :: nat
-  by simp
-
-global_interpretation xor_nat: zip_nat "(\<noteq>)"
-  defines xor_nat = xor_nat.F
-  by standard auto
-
-declare xor_nat.simps [simp] \<comment> \<open>inconsistent declaration handling by
-  \<open>global_interpretation\<close> in \<open>instantiation\<close>\<close>
-
-lemma zero_nat_xor_eq [simp]:
-  "0 XOR n = n" for n :: nat
-  by simp
-
-lemma xor_zero_nat_eq [simp]:
-  "n XOR 0 = n" for n :: nat
-  by simp
-
-definition shift_left_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"
-  where [simp]: "m << n = push_bit n m" for m :: nat
-
-definition shift_right_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"
-  where [simp]: "m >> n = drop_bit n m" for m :: nat
+instance nat :: semiring_bit_representation
+  apply standard
+      apply (simp_all only: and_nat.of_bits or_nat.of_bits xor_nat.of_bits)
+   apply (simp_all add: drop_bit_eq_div Parity.drop_bit_eq_div shift_bit_eq_mult push_bit_eq_mult)
+  done
 
-instance proof
-  show "semilattice ((AND) :: nat \<Rightarrow> _)"
-    by (fact and_nat.semilattice_axioms)
-  show "semilattice ((OR):: nat \<Rightarrow> _)"
-    by (fact or_nat.semilattice_axioms)
-  show "abel_semigroup ((XOR):: nat \<Rightarrow> _)"
-    by (fact xor_nat.abel_semigroup_axioms)
-  show "(not :: nat \<Rightarrow> _) = of_bits \<circ> map Not \<circ> bits_of"
-    by (fact not_nat_def)
-  show "of_bits bs AND of_bits cs = (of_bits (map2 (\<and>) bs cs) :: nat)"
-    if "length bs = length cs" for bs cs
-    using that by (fact and_nat.of_bits)
-  show "of_bits bs OR of_bits cs = (of_bits (map2 (\<or>) bs cs) :: nat)"
-    if "length bs = length cs" for bs cs
-    using that by (fact or_nat.of_bits)
-  show "of_bits bs XOR of_bits cs = (of_bits (map2 (\<noteq>) bs cs) :: nat)"
-    if "length bs = length cs" for bs cs
-    using that by (fact xor_nat.of_bits)
-  show "m << n = of_bits (replicate n False @ bits_of m)"
-    for m n :: nat
-    by simp
-  show "m >> n = of_bits (drop n (bits_of m))"
-    for m n :: nat
-    by simp
-qed
-
-end
-
-global_interpretation or_nat: semilattice_neutr "(OR)" "0 :: nat"
-  by standard simp
-
-global_interpretation xor_nat: comm_monoid "(XOR)" "0 :: nat"
-  by standard simp
-
-lemma not_nat_simps [simp]:
-  "NOT 0 = (0::nat)"
-  "n > 0 \<Longrightarrow> NOT n = of_bool (even n) + 2 * NOT (n div 2)" for n :: nat
-  by (simp_all add: not_eq)
-
-lemma not_1_nat [simp]:
-  "NOT 1 = (0::nat)"
-  by simp
-
-lemma not_Suc_0 [simp]:
-  "NOT (Suc 0) = (0::nat)"
-  by simp
-
-lemma Suc_0_and_eq [simp]:
-  "Suc 0 AND n = n mod 2"
-  by (cases n) auto
-
-lemma and_Suc_0_eq [simp]:
-  "n AND Suc 0 = n mod 2"
-  using Suc_0_and_eq [of n] by (simp add: ac_simps)
-
-lemma Suc_0_or_eq [simp]:
-  "Suc 0 OR n = n + of_bool (even n)"
-  by (cases n) (simp_all add: ac_simps)
-
-lemma or_Suc_0_eq [simp]:
-  "n OR Suc 0 = n + of_bool (even n)"
-  using Suc_0_or_eq [of n] by (simp add: ac_simps)
-
-lemma Suc_0_xor_eq [simp]:
-  "Suc 0 XOR n = n + of_bool (even n) - of_bool (odd n)"
-  by (cases n) (simp_all add: ac_simps)
-
-lemma xor_Suc_0_eq [simp]:
-  "n XOR Suc 0 = n + of_bool (even n) - of_bool (odd n)"
-  using Suc_0_xor_eq [of n] by (simp add: ac_simps)
-
-
-subsubsection \<open>Instance \<^typ>\<open>int\<close>\<close>
-
-abbreviation (input) complement :: "int \<Rightarrow> int"
-  where "complement k \<equiv> - k - 1"
-
-lemma complement_half:
-  "complement (k * 2) div 2 = complement k"
-  by simp
-
-lemma complement_div_2:
-  "complement (k div 2) = complement k div 2"
-  by linarith
-
-locale zip_int = single: abel_semigroup f
-  for f :: "bool \<Rightarrow> bool \<Rightarrow> bool"  (infixl "\<^bold>*" 70)
+context zip_int
 begin
  
-lemma False_False_imp_True_True:
-  "True \<^bold>* True" if "False \<^bold>* False"
-proof (rule ccontr)
-  assume "\<not> True \<^bold>* True"
-  with that show False
-    using single.assoc [of False True True]
-    by (cases "False \<^bold>* True") simp_all
-qed
-
-function F :: "int \<Rightarrow> int \<Rightarrow> int"  (infixl "\<^bold>\<times>" 70)
-  where "k \<^bold>\<times> l = (if k \<in> {0, - 1} \<and> l \<in> {0, - 1}
-    then - of_bool (odd k \<^bold>* odd l)
-    else of_bool (odd k \<^bold>* odd l) + (k div 2) \<^bold>\<times> (l div 2) * 2)"
-  by auto
-
-termination
-  by (relation "measure (\<lambda>(k, l). nat (\<bar>k\<bar> + \<bar>l\<bar>))") auto
-
-lemma zero_left_eq:
-  "0 \<^bold>\<times> l = (case (False \<^bold>* False, False \<^bold>* True)
-    of (False, False) \<Rightarrow> 0
-     | (False, True) \<Rightarrow> l
-     | (True, False) \<Rightarrow> complement l
-     | (True, True) \<Rightarrow> - 1)"
-  by (induction l rule: int_bit_induct)
-   (simp_all split: bool.split) 
-
-lemma minus_left_eq:
-  "- 1 \<^bold>\<times> l = (case (True \<^bold>* False, True \<^bold>* True)
-    of (False, False) \<Rightarrow> 0
-     | (False, True) \<Rightarrow> l
-     | (True, False) \<Rightarrow> complement l
-     | (True, True) \<Rightarrow> - 1)"
-  by (induction l rule: int_bit_induct)
-   (simp_all split: bool.split) 
-
-lemma zero_right_eq:
-  "k \<^bold>\<times> 0 = (case (False \<^bold>* False, False \<^bold>* True)
-    of (False, False) \<Rightarrow> 0
-     | (False, True) \<Rightarrow> k
-     | (True, False) \<Rightarrow> complement k
-     | (True, True) \<Rightarrow> - 1)"
-  by (induction k rule: int_bit_induct)
-    (simp_all add: ac_simps split: bool.split)
-
-lemma minus_right_eq:
-  "k \<^bold>\<times> - 1 = (case (True \<^bold>* False, True \<^bold>* True)
-    of (False, False) \<Rightarrow> 0
-     | (False, True) \<Rightarrow> k
-     | (True, False) \<Rightarrow> complement k
-     | (True, True) \<Rightarrow> - 1)"
-  by (induction k rule: int_bit_induct)
-    (simp_all add: ac_simps split: bool.split)
-
-lemma simps [simp]:
-  "0 \<^bold>\<times> 0 = - of_bool (False \<^bold>* False)"
-  "- 1 \<^bold>\<times> 0 = - of_bool (True \<^bold>* False)"
-  "0 \<^bold>\<times> - 1 = - of_bool (False \<^bold>* True)"
-  "- 1 \<^bold>\<times> - 1 = - of_bool (True \<^bold>* True)"
-  "0 \<^bold>\<times> l = (case (False \<^bold>* False, False \<^bold>* True)
-    of (False, False) \<Rightarrow> 0
-     | (False, True) \<Rightarrow> l
-     | (True, False) \<Rightarrow> complement l
-     | (True, True) \<Rightarrow> - 1)"
-  "- 1 \<^bold>\<times> l = (case (True \<^bold>* False, True \<^bold>* True)
-    of (False, False) \<Rightarrow> 0
-     | (False, True) \<Rightarrow> l
-     | (True, False) \<Rightarrow> complement l
-     | (True, True) \<Rightarrow> - 1)"
-  "k \<^bold>\<times> 0 = (case (False \<^bold>* False, False \<^bold>* True)
-    of (False, False) \<Rightarrow> 0
-     | (False, True) \<Rightarrow> k
-     | (True, False) \<Rightarrow> complement k
-     | (True, True) \<Rightarrow> - 1)"
-  "k \<^bold>\<times> - 1 = (case (True \<^bold>* False, True \<^bold>* True)
-    of (False, False) \<Rightarrow> 0
-     | (False, True) \<Rightarrow> k
-     | (True, False) \<Rightarrow> complement k
-     | (True, True) \<Rightarrow> - 1)"
-  "k \<noteq> 0 \<Longrightarrow> k \<noteq> - 1 \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> l \<noteq> - 1
-    \<Longrightarrow> k \<^bold>\<times> l = of_bool (odd k \<^bold>* odd l) + (k div 2) \<^bold>\<times> (l div 2) * 2"
-  by simp_all[4] (simp_all only: zero_left_eq minus_left_eq zero_right_eq minus_right_eq, simp)
-
-declare F.simps [simp del]
-
-lemma rec:
-  "k \<^bold>\<times> l = of_bool (odd k \<^bold>* odd l) + (k div 2) \<^bold>\<times> (l div 2) * 2"
-  by (cases "k \<in> {0, - 1} \<and> l \<in> {0, - 1}") (auto simp add: ac_simps F.simps [of k l] split: bool.split)
-
-sublocale abel_semigroup F
-proof
-  show "k \<^bold>\<times> l \<^bold>\<times> r = k \<^bold>\<times> (l \<^bold>\<times> r)" for k l r :: int
-  proof (induction k arbitrary: l r rule: int_bit_induct)
-    case zero
-    have "complement l \<^bold>\<times> r = complement (l \<^bold>\<times> r)" if "False \<^bold>* False" "\<not> False \<^bold>* True"
-    proof (induction l arbitrary: r rule: int_bit_induct)
-      case zero
-      from that show ?case
-        by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits)
-    next
-      case minus
-      from that show ?case
-        by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits)
-    next
-      case (even l)
-      with that rec [of _ r] show ?case
-        by (cases "even r")
-          (auto simp add: complement_half ac_simps False_False_imp_True_True split: bool.splits)
-    next
-      case (odd l)
-      moreover have "- l - 1 = - 1 - l"
-        by simp
-      ultimately show ?case
-        using that rec [of _ r]
-        by (cases "even r")
-          (auto simp add: ac_simps False_False_imp_True_True split: bool.splits)
-    qed
-    then show ?case
-      by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits)
-  next
-    case minus
-    have "complement l \<^bold>\<times> r = complement (l \<^bold>\<times> r)" if "\<not> True \<^bold>* True" "False \<^bold>* True"
-    proof (induction l arbitrary: r rule: int_bit_induct)
-      case zero
-      from that show ?case
-        by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits)
-    next
-      case minus
-      from that show ?case
-        by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits)
-    next
-      case (even l)
-      with that rec [of _ r] show ?case
-        by (cases "even r")
-          (auto simp add: complement_half ac_simps False_False_imp_True_True split: bool.splits)
-    next
-      case (odd l)
-      moreover have "- l - 1 = - 1 - l"
-        by simp
-      ultimately show ?case
-        using that rec [of _ r]
-        by (cases "even r")
-          (auto simp add: ac_simps False_False_imp_True_True split: bool.splits)
-    qed
-    then show ?case
-      by (auto simp add: ac_simps False_False_imp_True_True split: bool.splits)
-  next
-    case (even k)
-    with rec [of "k * 2"] rec [of _ r] show ?case
-      by (cases "even r"; cases "even l") (auto simp add: ac_simps False_False_imp_True_True)
-  next
-    case (odd k)
-    with rec [of "1 + k * 2"] rec [of _ r] show ?case
-      by (cases "even r"; cases "even l") (auto simp add: ac_simps False_False_imp_True_True)
-  qed
-  show "k \<^bold>\<times> l = l \<^bold>\<times> k" for k l :: int
-  proof (induction k arbitrary: l rule: int_bit_induct)
-    case zero
-    show ?case
-      by simp
-  next
-    case minus
-    show ?case
-      by simp
-  next
-    case (even k)
-    with rec [of "k * 2" l] rec [of l "k * 2"] show ?case
-      by (simp add: ac_simps)
-  next
-    case (odd k)
-    with rec [of "k * 2 + 1" l] rec [of l "k * 2 + 1"] show ?case
-      by (simp add: ac_simps)
-  qed
-qed
-
-lemma self [simp]:
-  "k \<^bold>\<times> k = (case (False \<^bold>* False, True \<^bold>* True)
-    of (False, False) \<Rightarrow> 0
-     | (False, True) \<Rightarrow> k
-     | (True, True) \<Rightarrow> - 1)"
-  by (induction k rule: int_bit_induct) (auto simp add: False_False_imp_True_True split: bool.split)
-
-lemma even_iff [simp]:
-  "even (k \<^bold>\<times> l) \<longleftrightarrow> \<not> (odd k \<^bold>* odd l)"
-proof (induction k arbitrary: l rule: int_bit_induct)
-  case zero
-  show ?case
-    by (cases "even l") (simp_all split: bool.splits)
-next
-  case minus
-  show ?case
-    by (cases "even l") (simp_all split: bool.splits)
-next
-  case (even k)
-  then show ?case
-    by (simp add: rec [of "k * 2"])
-next
-  case (odd k)
-  then show ?case
-    by (simp add: rec [of "1 + k * 2"])
-qed
-
 lemma of_bits:
   "of_bits bs \<^bold>\<times> of_bits cs = (of_bits (map2 (\<^bold>*) bs cs) :: int)"
     if "length bs = length cs" and "\<not> False \<^bold>* False" for bs cs
@@ -782,265 +351,18 @@
 
 end
 
-instantiation int :: bit_operations
-begin
-
-definition not_int :: "int \<Rightarrow> int"
-  where "not_int = complement"
-
-global_interpretation and_int: zip_int "(\<and>)"
-  defines and_int = and_int.F
-  by standard
-
-declare and_int.simps [simp] \<comment> \<open>inconsistent declaration handling by
-  \<open>global_interpretation\<close> in \<open>instantiation\<close>\<close>
-
-global_interpretation and_int: semilattice "(AND) :: int \<Rightarrow> int \<Rightarrow> int"
-proof (rule semilattice.intro, fact and_int.abel_semigroup_axioms, standard)
-  show "k AND k = k" for k :: int
-    by (simp add: and_int.self)
-qed
-
-lemma zero_int_and_eq [simp]:
-  "0 AND k = 0" for k :: int
-  by simp
-
-lemma and_zero_int_eq [simp]:
-  "k AND 0 = 0" for k :: int
-  by simp
-
-lemma minus_int_and_eq [simp]:
-  "- 1 AND k = k" for k :: int
-  by simp
-
-lemma and_minus_int_eq [simp]:
-  "k AND - 1 = k" for k :: int
-  by simp
-
-global_interpretation or_int: zip_int "(\<or>)"
-  defines or_int = or_int.F
-  by standard
-
-declare or_int.simps [simp] \<comment> \<open>inconsistent declaration handling by
-  \<open>global_interpretation\<close> in \<open>instantiation\<close>\<close>
-
-global_interpretation or_int: semilattice "(OR) :: int \<Rightarrow> int \<Rightarrow> int"
-proof (rule semilattice.intro, fact or_int.abel_semigroup_axioms, standard)
-  show "k OR k = k" for k :: int
-    by (simp add: or_int.self)
-qed
-
-lemma zero_int_or_eq [simp]:
-  "0 OR k = k" for k :: int
-  by simp
-
-lemma and_zero_or_eq [simp]:
-  "k OR 0 = k" for k :: int
-  by simp
-
-lemma minus_int_or_eq [simp]:
-  "- 1 OR k = - 1" for k :: int
-  by simp
-
-lemma or_minus_int_eq [simp]:
-  "k OR - 1 = - 1" for k :: int
-  by simp
-
-global_interpretation xor_int: zip_int "(\<noteq>)"
-  defines xor_int = xor_int.F
-  by standard
-
-declare xor_int.simps [simp] \<comment> \<open>inconsistent declaration handling by
-  \<open>global_interpretation\<close> in \<open>instantiation\<close>\<close>
-
-lemma zero_int_xor_eq [simp]:
-  "0 XOR k = k" for k :: int
-  by simp
-
-lemma and_zero_xor_eq [simp]:
-  "k XOR 0 = k" for k :: int
-  by simp
-
-lemma minus_int_xor_eq [simp]:
-  "- 1 XOR k = complement k" for k :: int
-  by simp
-
-lemma xor_minus_int_eq [simp]:
-  "k XOR - 1 = complement k" for k :: int
-  by simp
-
-definition shift_left_int :: "int \<Rightarrow> nat \<Rightarrow> int"
-  where [simp]: "k << n = push_bit n k" for k :: int
-
-definition shift_right_int :: "int \<Rightarrow> nat \<Rightarrow> int"
-  where [simp]: "k >> n = drop_bit n k" for k :: int
-
-instance proof
-  show "semilattice ((AND) :: int \<Rightarrow> _)"
-    by (fact and_int.semilattice_axioms)
-  show "semilattice ((OR) :: int \<Rightarrow> _)"
-    by (fact or_int.semilattice_axioms)
-  show "abel_semigroup ((XOR) :: int \<Rightarrow> _)"
-    by (fact xor_int.abel_semigroup_axioms)
+instance int :: ring_bit_representation
+proof
   show "(not :: int \<Rightarrow> _) = of_bits \<circ> map Not \<circ> bits_of"
   proof (rule sym, rule ext)
     fix k :: int
     show "(of_bits \<circ> map Not \<circ> bits_of) k = NOT k"
       by (induction k rule: int_bit_induct) (simp_all add: not_int_def)
   qed
-  show "of_bits bs AND of_bits cs = (of_bits (map2 (\<and>) bs cs) :: int)"
-    if "length bs = length cs" for bs cs
-    using that by (rule and_int.of_bits) simp
-  show "of_bits bs OR of_bits cs = (of_bits (map2 (\<or>) bs cs) :: int)"
-    if "length bs = length cs" for bs cs
-    using that by (rule or_int.of_bits) simp
-  show "of_bits bs XOR of_bits cs = (of_bits (map2 (\<noteq>) bs cs) :: int)"
-    if "length bs = length cs" for bs cs
-    using that by (rule xor_int.of_bits) simp
-  show "k << n = of_bits (replicate n False @ bits_of k)"
+  show "shift_bit n k = of_bits (replicate n False @ bits_of k)"
     for k :: int and n :: nat
-    by (cases "n = 0") simp_all
-  show "k >> n = of_bits (drop n (bits_of k))"
-    if "n < length (bits_of k)"
-    for k :: int and n :: nat
-    using that by simp
-qed
+    by (cases "n = 0") (simp_all add: shift_bit_eq_push_bit)
+qed (simp_all add: and_int.of_bits or_int.of_bits xor_int.of_bits
+  drop_bit_eq_drop_bit)
 
 end
-
-global_interpretation and_int: semilattice_neutr "(AND)" "- 1 :: int"
-  by standard simp
-
-global_interpretation or_int: semilattice_neutr "(OR)" "0 :: int"
-  by standard simp
-
-global_interpretation xor_int: comm_monoid "(XOR)" "0 :: int"
-  by standard simp
-
-lemma not_int_simps [simp]:
-  "NOT 0 = (- 1 :: int)"
-  "NOT (- 1) = (0 :: int)"
-  "k \<noteq> 0 \<Longrightarrow> k \<noteq> - 1 \<Longrightarrow> NOT k = of_bool (even k) + 2 * NOT (k div 2)" for k :: int
-  by (auto simp add: not_int_def elim: oddE)
-
-lemma not_one_int [simp]:
-  "NOT 1 = (- 2 :: int)"
-  by simp
-
-lemma even_not_iff [simp]:
-  "even (NOT k) \<longleftrightarrow> odd k"
-  for k :: int
-  by (simp add: not_int_def)
-
-lemma not_div_2:
-  "NOT k div 2 = NOT (k div 2)"
-  for k :: int
-  by (simp add: complement_div_2 not_int_def)
-
-lemma one_and_int_eq [simp]:
-  "1 AND k = k mod 2" for k :: int
-  using and_int.rec [of 1] by (simp add: mod2_eq_if)
-
-lemma and_one_int_eq [simp]:
-  "k AND 1 = k mod 2" for k :: int
-  using one_and_int_eq [of 1] by (simp add: ac_simps)
-
-lemma one_or_int_eq [simp]:
-  "1 OR k = k + of_bool (even k)" for k :: int
-  using or_int.rec [of 1] by (auto elim: oddE)
-
-lemma or_one_int_eq [simp]:
-  "k OR 1 = k + of_bool (even k)" for k :: int
-  using one_or_int_eq [of k] by (simp add: ac_simps)
-
-lemma one_xor_int_eq [simp]:
-  "1 XOR k = k + of_bool (even k) - of_bool (odd k)" for k :: int
-  using xor_int.rec [of 1] by (auto elim: oddE)
-
-lemma xor_one_int_eq [simp]:
-  "k XOR 1 = k + of_bool (even k) - of_bool (odd k)" for k :: int
-  using one_xor_int_eq [of k] by (simp add: ac_simps)
-
-global_interpretation bit_int: boolean_algebra "(AND)" "(OR)" NOT 0 "- 1 :: int"
-  rewrites "bit_int.xor = ((XOR) :: int \<Rightarrow> _)"
-proof -
-  interpret bit_int: boolean_algebra "(AND)" "(OR)" NOT 0 "- 1 :: int"
-  proof
-    show "k AND (l OR r) = k AND l OR k AND r"
-      for k l r :: int
-    proof (induction k arbitrary: l r rule: int_bit_induct)
-      case zero
-      show ?case
-        by simp
-    next
-      case minus
-      show ?case
-        by simp
-    next
-      case (even k)
-      then show ?case by (simp add: and_int.rec [of "k * 2"]
-        or_int.rec [of "(k AND l div 2) * 2"] or_int.rec [of l])
-    next
-      case (odd k)
-      then show ?case by (simp add: and_int.rec [of "1 + k * 2"]
-        or_int.rec [of "(k AND l div 2) * 2"] or_int.rec [of "1 + (k AND l div 2) * 2"] or_int.rec [of l])
-    qed
-    show "k OR l AND r = (k OR l) AND (k OR r)"
-      for k l r :: int
-    proof (induction k arbitrary: l r rule: int_bit_induct)
-      case zero
-      then show ?case
-        by simp
-    next
-      case minus
-      then show ?case
-        by simp
-    next
-      case (even k)
-      then show ?case by (simp add: or_int.rec [of "k * 2"]
-        and_int.rec [of "(k OR l div 2) * 2"] and_int.rec [of "1 + (k OR l div 2) * 2"] and_int.rec [of l])
-    next
-      case (odd k)
-      then show ?case by (simp add: or_int.rec [of "1 + k * 2"]
-        and_int.rec [of "1 + (k OR l div 2) * 2"] and_int.rec [of l])
-    qed
-    show "k AND NOT k = 0" for k :: int
-      by (induction k rule: int_bit_induct)
-        (simp_all add: not_int_def complement_half minus_diff_commute [of 1])
-    show "k OR NOT k = - 1" for k :: int
-      by (induction k rule: int_bit_induct)
-        (simp_all add: not_int_def complement_half minus_diff_commute [of 1])
-  qed simp_all
-  show "boolean_algebra (AND) (OR) NOT 0 (- 1 :: int)"
-    by (fact bit_int.boolean_algebra_axioms)
-  show "bit_int.xor = ((XOR) :: int \<Rightarrow> _)"
-  proof (rule ext)+
-    fix k l :: int
-    have "k XOR l = k AND NOT l OR NOT k AND l"
-    proof (induction k arbitrary: l rule: int_bit_induct)
-      case zero
-      show ?case
-        by simp
-    next
-      case minus
-      show ?case
-        by (simp add: not_int_def)
-    next
-      case (even k)
-      then show ?case
-        by (simp add: xor_int.rec [of "k * 2"] and_int.rec [of "k * 2"]
-          or_int.rec [of _ "1 + 2 * NOT k AND l"] not_div_2)
-          (simp add: and_int.rec [of _ l])
-    next
-      case (odd k)
-      then show ?case
-        by (simp add: xor_int.rec [of "1 + k * 2"] and_int.rec [of "1 + k * 2"]
-          or_int.rec [of _ "2 * NOT k AND l"] not_div_2)
-          (simp add: and_int.rec [of _ l])
-    qed
-    then show "bit_int.xor k l = k XOR l"
-      by (simp add: bit_int.xor_def)
-  qed
-qed
-
-end