--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Complex_Order.thy Wed Oct 06 14:19:46 2021 +0200
@@ -0,0 +1,39 @@
+(*
+ Title: HOL/Library/Complex_Order.thy
+ Author: Dominique Unruh, University of Tartu
+
+ Instantiation of complex numbers as an ordered set.
+*)
+
+theory Complex_Order
+ imports Complex_Main
+begin
+
+instantiation complex :: order begin
+
+definition \<open>x < y \<longleftrightarrow> Re x < Re y \<and> Im x = Im y\<close>
+definition \<open>x \<le> y \<longleftrightarrow> Re x \<le> Re y \<and> Im x = Im y\<close>
+
+instance
+ apply standard
+ by (auto simp: less_complex_def less_eq_complex_def complex_eq_iff)
+end
+
+lemma nonnegative_complex_is_real: \<open>(x::complex) \<ge> 0 \<Longrightarrow> x \<in> \<real>\<close>
+ by (simp add: complex_is_Real_iff less_eq_complex_def)
+
+lemma complex_is_real_iff_compare0: \<open>(x::complex) \<in> \<real> \<longleftrightarrow> x \<le> 0 \<or> x \<ge> 0\<close>
+ using complex_is_Real_iff less_eq_complex_def by auto
+
+instance complex :: ordered_comm_ring
+ apply standard
+ by (auto simp: less_complex_def less_eq_complex_def complex_eq_iff mult_left_mono mult_right_mono)
+
+instance complex :: ordered_real_vector
+ apply standard
+ by (auto simp: less_complex_def less_eq_complex_def mult_left_mono mult_right_mono)
+
+instance complex :: ordered_cancel_comm_semiring
+ by standard
+
+end