src/HOL/Real/ferrante_rackoff.ML
changeset 19640 40ec89317425
child 19825 bb5357536621
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Real/ferrante_rackoff.ML	Tue May 16 13:01:22 2006 +0200
@@ -0,0 +1,129 @@
+(*
+    ID:         $Id$
+    Author:     Amine Chaieb, TU Muenchen
+
+Ferrante and Rackoff Algorithm.
+*)
+
+structure Ferrante_Rackoff:
+sig
+  val trace : bool ref
+  val ferrack_tac : bool -> int -> tactic
+  val setup : theory -> theory
+end =
+struct
+
+val trace = ref false;
+fun trace_msg s = if !trace then tracing s else ();
+
+val context_ss = simpset_of (the_context ());
+
+val nT = HOLogic.natT;
+val binarith = map thm
+  ["Pls_0_eq", "Min_1_eq",
+ "bin_pred_Pls","bin_pred_Min","bin_pred_1","bin_pred_0",
+  "bin_succ_Pls", "bin_succ_Min", "bin_succ_1", "bin_succ_0",
+  "bin_add_Pls", "bin_add_Min", "bin_add_BIT_0", "bin_add_BIT_10",
+  "bin_add_BIT_11", "bin_minus_Pls", "bin_minus_Min", "bin_minus_1", 
+  "bin_minus_0", "bin_mult_Pls", "bin_mult_Min", "bin_mult_1", "bin_mult_0", 
+  "bin_add_Pls_right", "bin_add_Min_right"];
+ val intarithrel = 
+     (map thm ["int_eq_number_of_eq","int_neg_number_of_BIT", 
+		"int_le_number_of_eq","int_iszero_number_of_0",
+		"int_less_number_of_eq_neg"]) @
+     (map (fn s => thm s RS thm "lift_bool") 
+	  ["int_iszero_number_of_Pls","int_iszero_number_of_1",
+	   "int_neg_number_of_Min"])@
+     (map (fn s => thm s RS thm "nlift_bool") 
+	  ["int_nonzero_number_of_Min","int_not_neg_number_of_Pls"]);
+     
+val intarith = map thm ["int_number_of_add_sym", "int_number_of_minus_sym",
+			"int_number_of_diff_sym", "int_number_of_mult_sym"];
+val natarith = map thm ["add_nat_number_of", "diff_nat_number_of",
+			"mult_nat_number_of", "eq_nat_number_of",
+			"less_nat_number_of"]
+val powerarith = 
+    (map thm ["nat_number_of", "zpower_number_of_even", 
+	      "zpower_Pls", "zpower_Min"]) @ 
+    [(Tactic.simplify true [thm "zero_eq_Numeral0_nring", 
+			   thm "one_eq_Numeral1_nring"] 
+  (thm "zpower_number_of_odd"))]
+
+val comp_arith = binarith @ intarith @ intarithrel @ natarith 
+	    @ powerarith @[thm"not_false_eq_true", thm "not_true_eq_false"];
+
+fun prepare_for_linr sg q fm = 
+  let
+    val ps = Logic.strip_params fm
+    val hs = map HOLogic.dest_Trueprop (Logic.strip_assums_hyp fm)
+    val c = HOLogic.dest_Trueprop (Logic.strip_assums_concl fm)
+    fun mk_all ((s, T), (P,n)) =
+      if 0 mem loose_bnos P then
+        (HOLogic.all_const T $ Abs (s, T, P), n)
+      else (incr_boundvars ~1 P, n-1)
+    fun mk_all2 (v, t) = HOLogic.all_const (fastype_of v) $ lambda v t;
+      val rhs = hs
+(*    val (rhs,irhs) = List.partition (relevant (rev ps)) hs *)
+    val np = length ps
+    val (fm',np) =  foldr (fn ((x, T), (fm,n)) => mk_all ((x, T), (fm,n)))
+      (foldr HOLogic.mk_imp c rhs, np) ps
+    val (vs, _) = List.partition (fn t => q orelse (type_of t) = nT)
+      (term_frees fm' @ term_vars fm');
+    val fm2 = foldr mk_all2 fm' vs
+  in (fm2, np + length vs, length rhs) end;
+
+(*Object quantifier to meta --*)
+fun spec_step n th = if (n=0) then th else (spec_step (n-1) th) RS spec ;
+
+(* object implication to meta---*)
+fun mp_step n th = if (n=0) then th else (mp_step (n-1) th) RS mp;
+
+
+fun ferrack_tac q i = ObjectLogic.atomize_tac i THEN (fn st =>
+  let
+    val g = List.nth (prems_of st, i - 1)
+    val sg = sign_of_thm st
+    (* Transform the term*)
+    val (t,np,nh) = prepare_for_linr sg q g
+    (* Some simpsets for dealing with mod div abs and nat*)
+    val simpset0 = HOL_basic_ss addsimps comp_arith addsplits [split_min, split_max]
+    (* simp rules for elimination of abs *)
+    val simpset3 = HOL_basic_ss addsplits [abs_split]
+    val ct = cterm_of sg (HOLogic.mk_Trueprop t)
+    (* Theorem for the nat --> int transformation *)
+    val pre_thm = Seq.hd (EVERY
+      [simp_tac simpset0 1,
+       TRY (simp_tac simpset3 1), TRY (simp_tac context_ss 1)]
+      (trivial ct))
+    fun assm_tac i = REPEAT_DETERM_N nh (assume_tac i)
+    (* The result of the quantifier elimination *)
+    val (th, tac) = case (prop_of pre_thm) of
+        Const ("==>", _) $ (Const ("Trueprop", _) $ t1) $ _ =>
+    let val pth = Ferrante_Rackoff_Proof.qelim (cterm_of sg (Pattern.eta_long [] t1))
+    in 
+          (trace_msg ("calling procedure with term:\n" ^
+             Sign.string_of_term sg t1);
+           ((pth RS iffD2) RS pre_thm,
+            assm_tac (i + 1) THEN (if q then I else TRY) (rtac TrueI i)))
+    end
+      | _ => (pre_thm, assm_tac i)
+  in (rtac (((mp_step nh) o (spec_step np)) th) i 
+      THEN tac) st
+  end handle Subscript => no_tac st | Ferrante_Rackoff_Proof.FAILURE _ => no_tac st);
+
+fun ferrack_args meth =
+ let val parse_flag = 
+         Args.$$$ "no_quantify" >> (K (K false));
+ in
+   Method.simple_args 
+  (Scan.optional (Args.$$$ "(" |-- Scan.repeat1 parse_flag --| Args.$$$ ")") [] >>
+    curry (Library.foldl op |>) true)
+    (fn q => fn _ => meth q 1)
+  end;
+
+val setup =
+  Method.add_method ("ferrack",
+     ferrack_args (Method.SIMPLE_METHOD oo ferrack_tac),
+     "LCF-proof-producing decision procedure for linear real arithmetic");
+
+end