src/HOLCF/Ssum0.ML
changeset 15568 41bfe19eabe2
parent 14981 e73f8140af78
--- a/src/HOLCF/Ssum0.ML	Thu Mar 03 00:42:04 2005 +0100
+++ b/src/HOLCF/Ssum0.ML	Thu Mar 03 01:37:32 2005 +0100
@@ -1,292 +1,29 @@
-(*  Title:      HOLCF/Ssum0.ML
-    ID:         $Id$
-    Author:     Franz Regensburger
 
-Strict sum with typedef
-*)
-
-(* ------------------------------------------------------------------------ *)
-(* A non-emptyness result for Sssum                                         *)
-(* ------------------------------------------------------------------------ *)
-
-Goalw [Ssum_def] "Sinl_Rep(a):Ssum";
-by (Blast_tac 1);
-qed "SsumIl";
-
-Goalw [Ssum_def] "Sinr_Rep(a):Ssum";
-by (Blast_tac 1);
-qed "SsumIr";
-
-Goal "inj_on Abs_Ssum Ssum";
-by (rtac inj_on_inverseI 1);
-by (etac Abs_Ssum_inverse 1);
-qed "inj_on_Abs_Ssum";
-
-(* ------------------------------------------------------------------------ *)
-(* Strictness of Sinr_Rep, Sinl_Rep and Isinl, Isinr                        *)
-(* ------------------------------------------------------------------------ *)
-
-Goalw [Sinr_Rep_def,Sinl_Rep_def]
- "Sinl_Rep(UU) = Sinr_Rep(UU)";
-by (rtac ext 1);
-by (rtac ext 1);
-by (rtac ext 1);
-by (fast_tac HOL_cs 1);
-qed "strict_SinlSinr_Rep";
-
-Goalw [Isinl_def,Isinr_def]
- "Isinl(UU) = Isinr(UU)";
-by (rtac (strict_SinlSinr_Rep RS arg_cong) 1);
-qed "strict_IsinlIsinr";
-
-
-(* ------------------------------------------------------------------------ *)
-(* distinctness of  Sinl_Rep, Sinr_Rep and Isinl, Isinr                     *)
-(* ------------------------------------------------------------------------ *)
-
-Goalw [Sinl_Rep_def,Sinr_Rep_def]
-        "(Sinl_Rep(a) = Sinr_Rep(b)) ==> a=UU & b=UU";
-by (blast_tac (claset() addSDs [fun_cong]) 1);
-qed "noteq_SinlSinr_Rep";
-
-
-Goalw [Isinl_def,Isinr_def]
-        "Isinl(a)=Isinr(b) ==> a=UU & b=UU";
-by (rtac noteq_SinlSinr_Rep 1);
-by (etac (inj_on_Abs_Ssum  RS inj_onD) 1);
-by (rtac SsumIl 1);
-by (rtac SsumIr 1);
-qed "noteq_IsinlIsinr";
-
-
-
-(* ------------------------------------------------------------------------ *)
-(* injectivity of Sinl_Rep, Sinr_Rep and Isinl, Isinr                       *)
-(* ------------------------------------------------------------------------ *)
-
-Goalw [Sinl_Rep_def] "(Sinl_Rep(a) = Sinl_Rep(UU)) ==> a=UU";
-by (blast_tac (claset() addSDs [fun_cong]) 1);
-qed "inject_Sinl_Rep1";
-
-Goalw [Sinr_Rep_def] "(Sinr_Rep(b) = Sinr_Rep(UU)) ==> b=UU";
-by (blast_tac (claset() addSDs [fun_cong]) 1);
-qed "inject_Sinr_Rep1";
-
-Goalw [Sinl_Rep_def]
-"[| a1~=UU ; a2~=UU ; Sinl_Rep(a1)=Sinl_Rep(a2) |] ==> a1=a2";
-by (blast_tac (claset() addSDs [fun_cong]) 1);
-qed "inject_Sinl_Rep2";
-
-Goalw [Sinr_Rep_def]
-"[|b1~=UU ; b2~=UU ; Sinr_Rep(b1)=Sinr_Rep(b2) |] ==> b1=b2";
-by (blast_tac (claset() addSDs [fun_cong]) 1);
-qed "inject_Sinr_Rep2";
-
-Goal "Sinl_Rep(a1)=Sinl_Rep(a2) ==> a1=a2";
-by (case_tac "a1=UU" 1);
-by (hyp_subst_tac 1);
-by (rtac (inject_Sinl_Rep1 RS sym) 1);
-by (etac sym 1);
-by (case_tac "a2=UU" 1);
-by (hyp_subst_tac 1);
-by (etac inject_Sinl_Rep1 1);
-by (etac inject_Sinl_Rep2 1);
-by (atac 1);
-by (atac 1);
-qed "inject_Sinl_Rep";
-
-Goal "Sinr_Rep(b1)=Sinr_Rep(b2) ==> b1=b2";
-by (case_tac "b1=UU" 1);
-by (hyp_subst_tac 1);
-by (rtac (inject_Sinr_Rep1 RS sym) 1);
-by (etac sym 1);
-by (case_tac "b2=UU" 1);
-by (hyp_subst_tac 1);
-by (etac inject_Sinr_Rep1 1);
-by (etac inject_Sinr_Rep2 1);
-by (atac 1);
-by (atac 1);
-qed "inject_Sinr_Rep";
-
-Goalw [Isinl_def] "Isinl(a1)=Isinl(a2)==> a1=a2";
-by (rtac inject_Sinl_Rep 1);
-by (etac (inj_on_Abs_Ssum  RS inj_onD) 1);
-by (rtac SsumIl 1);
-by (rtac SsumIl 1);
-qed "inject_Isinl";
-
-Goalw [Isinr_def] "Isinr(b1)=Isinr(b2) ==> b1=b2";
-by (rtac inject_Sinr_Rep 1);
-by (etac (inj_on_Abs_Ssum  RS inj_onD) 1);
-by (rtac SsumIr 1);
-by (rtac SsumIr 1);
-qed "inject_Isinr";
-
-AddSDs [inject_Isinl, inject_Isinr];
-
-Goal "a1~=a2 ==> Isinl(a1) ~= Isinl(a2)";
-by (Blast_tac 1);
-qed "inject_Isinl_rev";
-
-Goal "b1~=b2 ==> Isinr(b1) ~= Isinr(b2)";
-by (Blast_tac 1);
-qed "inject_Isinr_rev";
-
-(* ------------------------------------------------------------------------ *)
-(* Exhaustion of the strict sum ++                                          *)
-(* choice of the bottom representation is arbitrary                         *)
-(* ------------------------------------------------------------------------ *)
+(* legacy ML bindings *)
 
-Goalw [Isinl_def,Isinr_def]
-        "z=Isinl(UU) | (? a. z=Isinl(a) & a~=UU) | (? b. z=Isinr(b) & b~=UU)";
-by (rtac (rewrite_rule [Ssum_def] Rep_Ssum RS CollectE) 1);
-by (etac disjE 1);
-by (etac exE 1);
-by (case_tac "z= Abs_Ssum(Sinl_Rep(UU))" 1);
-by (etac disjI1 1);
-by (rtac disjI2 1);
-by (rtac disjI1 1);
-by (rtac exI 1);
-by (rtac conjI 1);
-by (rtac (Rep_Ssum_inverse RS sym RS trans) 1);
-by (etac arg_cong 1);
-by (res_inst_tac [("Q","Sinl_Rep(a)=Sinl_Rep(UU)")] contrapos_nn 1);
-by (etac arg_cong 2);
-by (etac contrapos_nn 1);
-by (rtac (Rep_Ssum_inverse RS sym RS trans) 1);
-by (rtac trans 1);
-by (etac arg_cong 1);
-by (etac arg_cong 1);
-by (etac exE 1);
-by (case_tac "z= Abs_Ssum(Sinl_Rep(UU))" 1);
-by (etac disjI1 1);
-by (rtac disjI2 1);
-by (rtac disjI2 1);
-by (rtac exI 1);
-by (rtac conjI 1);
-by (rtac (Rep_Ssum_inverse RS sym RS trans) 1);
-by (etac arg_cong 1);
-by (res_inst_tac [("Q","Sinr_Rep(b)=Sinl_Rep(UU)")] contrapos_nn 1);
-by (hyp_subst_tac 2);
-by (rtac (strict_SinlSinr_Rep RS sym) 2);
-by (etac contrapos_nn 1);
-by (rtac (Rep_Ssum_inverse RS sym RS trans) 1);
-by (rtac trans 1);
-by (etac arg_cong 1);
-by (etac arg_cong 1);
-qed "Exh_Ssum";
-
-(* ------------------------------------------------------------------------ *)
-(* elimination rules for the strict sum ++                                  *)
-(* ------------------------------------------------------------------------ *)
-
-val prems = Goal
-        "[|p=Isinl(UU) ==> Q ;\
-\       !!x.[|p=Isinl(x); x~=UU |] ==> Q;\
-\       !!y.[|p=Isinr(y); y~=UU |] ==> Q|] ==> Q";
-by (rtac (Exh_Ssum RS disjE) 1);
-by (etac disjE 2);
-by (eresolve_tac prems 1);
-by (etac exE 1);
-by (etac conjE 1);
-by (eresolve_tac prems 1);
-by (atac 1);
-by (etac exE 1);
-by (etac conjE 1);
-by (eresolve_tac prems 1);
-by (atac 1);
-qed "IssumE";
-
-val prems = Goal
-"[| !!x. [| p = Isinl(x) |] ==> Q;   !!y. [| p = Isinr(y) |] ==> Q |] ==>Q";
-by (rtac IssumE 1);
-by (eresolve_tac prems 1);
-by (eresolve_tac prems 1);
-by (eresolve_tac prems 1);
-qed "IssumE2";
-
-
-
-
-(* ------------------------------------------------------------------------ *)
-(* rewrites for Iwhen                                                       *)
-(* ------------------------------------------------------------------------ *)
-
-Goalw [Iwhen_def]
-        "Iwhen f g (Isinl UU) = UU";
-by (rtac some_equality 1);
-by (rtac conjI 1);
-by (fast_tac HOL_cs  1);
-by (rtac conjI 1);
-by (strip_tac 1);
-by (res_inst_tac [("P","a=UU")] notE 1);
-by (fast_tac HOL_cs  1);
-by (rtac inject_Isinl 1);
-by (rtac sym 1);
-by (fast_tac HOL_cs  1);
-by (strip_tac 1);
-by (res_inst_tac [("P","b=UU")] notE 1);
-by (fast_tac HOL_cs  1);
-by (rtac inject_Isinr 1);
-by (rtac sym 1);
-by (rtac (strict_IsinlIsinr RS subst) 1);
-by (fast_tac HOL_cs  1);
-by (fast_tac HOL_cs  1);
-qed "Iwhen1";
-
-
-Goalw [Iwhen_def]
-        "x~=UU ==> Iwhen f g (Isinl x) = f$x";
-by (rtac some_equality 1);
-by (fast_tac HOL_cs  2);
-by (rtac conjI 1);
-by (strip_tac 1);
-by (res_inst_tac [("P","x=UU")] notE 1);
-by (atac 1);
-by (rtac inject_Isinl 1);
-by (atac 1);
-by (rtac conjI 1);
-by (strip_tac 1);
-by (rtac cfun_arg_cong 1);
-by (rtac inject_Isinl 1);
-by (fast_tac HOL_cs  1);
-by (strip_tac 1);
-by (res_inst_tac [("P","Isinl(x) = Isinr(b)")] notE 1);
-by (fast_tac HOL_cs  2);
-by (rtac contrapos_nn 1);
-by (etac noteq_IsinlIsinr 2);
-by (fast_tac HOL_cs  1);
-qed "Iwhen2";
-
-Goalw [Iwhen_def]
-        "y~=UU ==> Iwhen f g (Isinr y) = g$y";
-by (rtac some_equality 1);
-by (fast_tac HOL_cs  2);
-by (rtac conjI 1);
-by (strip_tac 1);
-by (res_inst_tac [("P","y=UU")] notE 1);
-by (atac 1);
-by (rtac inject_Isinr 1);
-by (rtac (strict_IsinlIsinr RS subst) 1);
-by (atac 1);
-by (rtac conjI 1);
-by (strip_tac 1);
-by (res_inst_tac [("P","Isinr(y) = Isinl(a)")] notE 1);
-by (fast_tac HOL_cs  2);
-by (rtac contrapos_nn 1);
-by (etac (sym RS noteq_IsinlIsinr) 2);
-by (fast_tac HOL_cs  1);
-by (strip_tac 1);
-by (rtac cfun_arg_cong 1);
-by (rtac inject_Isinr 1);
-by (fast_tac HOL_cs  1);
-qed "Iwhen3";
-
-(* ------------------------------------------------------------------------ *)
-(* instantiate the simplifier                                               *)
-(* ------------------------------------------------------------------------ *)
-
-val Ssum0_ss = (simpset_of Cfun3.thy) delsimps [range_composition] addsimps 
-                [(strict_IsinlIsinr RS sym),Iwhen1,Iwhen2,Iwhen3];
-
-Addsimps [strict_IsinlIsinr RS sym, Iwhen1, Iwhen2, Iwhen3];
+val Isinl_def = thm "Isinl_def";
+val Isinr_def = thm "Isinr_def";
+val Iwhen_def = thm "Iwhen_def";
+val SsumIl = thm "SsumIl";
+val SsumIr = thm "SsumIr";
+val inj_on_Abs_Ssum = thm "inj_on_Abs_Ssum";
+val strict_SinlSinr_Rep = thm "strict_SinlSinr_Rep";
+val strict_IsinlIsinr = thm "strict_IsinlIsinr";
+val noteq_SinlSinr_Rep = thm "noteq_SinlSinr_Rep";
+val noteq_IsinlIsinr = thm "noteq_IsinlIsinr";
+val inject_Sinl_Rep1 = thm "inject_Sinl_Rep1";
+val inject_Sinr_Rep1 = thm "inject_Sinr_Rep1";
+val inject_Sinl_Rep2 = thm "inject_Sinl_Rep2";
+val inject_Sinr_Rep2 = thm "inject_Sinr_Rep2";
+val inject_Sinl_Rep = thm "inject_Sinl_Rep";
+val inject_Sinr_Rep = thm "inject_Sinr_Rep";
+val inject_Isinl = thm "inject_Isinl";
+val inject_Isinr = thm "inject_Isinr";
+val inject_Isinl_rev = thm "inject_Isinl_rev";
+val inject_Isinr_rev = thm "inject_Isinr_rev";
+val Exh_Ssum = thm "Exh_Ssum";
+val IssumE = thm "IssumE";
+val IssumE2 = thm "IssumE2";
+val Iwhen1 = thm "Iwhen1";
+val Iwhen2 = thm "Iwhen2";
+val Iwhen3 = thm "Iwhen3";