src/HOL/BNF_FP_Base.thy
changeset 58128 43a1ba26a8cb
parent 58127 b7cab82f488e
child 58129 3ec65a7f2b50
--- a/src/HOL/BNF_FP_Base.thy	Mon Sep 01 16:34:39 2014 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,232 +0,0 @@
-(*  Title:      HOL/BNF_FP_Base.thy
-    Author:     Lorenz Panny, TU Muenchen
-    Author:     Dmitriy Traytel, TU Muenchen
-    Author:     Jasmin Blanchette, TU Muenchen
-    Author:     Martin Desharnais, TU Muenchen
-    Copyright   2012, 2013, 2014
-
-Shared fixed point operations on bounded natural functors.
-*)
-
-header {* Shared Fixed Point Operations on Bounded Natural Functors *}
-
-theory BNF_FP_Base
-imports BNF_Comp Basic_BNFs
-begin
-
-lemma False_imp_eq_True: "(False \<Longrightarrow> Q) \<equiv> Trueprop True"
-  by default simp_all
-
-lemma conj_imp_eq_imp_imp: "(P \<and> Q \<Longrightarrow> PROP R) \<equiv> (P \<Longrightarrow> Q \<Longrightarrow> PROP R)"
-  by default simp_all
-
-lemma mp_conj: "(P \<longrightarrow> Q) \<and> R \<Longrightarrow> P \<Longrightarrow> R \<and> Q"
-by auto
-
-lemma predicate2D_conj: "P \<le> Q \<and> R \<Longrightarrow> P x y \<Longrightarrow> R \<and> Q x y"
-  by auto
-
-lemma eq_sym_Unity_conv: "(x = (() = ())) = x"
-by blast
-
-lemma case_unit_Unity: "(case u of () \<Rightarrow> f) = f"
-by (cases u) (hypsubst, rule unit.case)
-
-lemma case_prod_Pair_iden: "(case p of (x, y) \<Rightarrow> (x, y)) = p"
-by simp
-
-lemma unit_all_impI: "(P () \<Longrightarrow> Q ()) \<Longrightarrow> \<forall>x. P x \<longrightarrow> Q x"
-by simp
-
-lemma pointfree_idE: "f \<circ> g = id \<Longrightarrow> f (g x) = x"
-unfolding comp_def fun_eq_iff by simp
-
-lemma o_bij:
-  assumes gf: "g \<circ> f = id" and fg: "f \<circ> g = id"
-  shows "bij f"
-unfolding bij_def inj_on_def surj_def proof safe
-  fix a1 a2 assume "f a1 = f a2"
-  hence "g ( f a1) = g (f a2)" by simp
-  thus "a1 = a2" using gf unfolding fun_eq_iff by simp
-next
-  fix b
-  have "b = f (g b)"
-  using fg unfolding fun_eq_iff by simp
-  thus "EX a. b = f a" by blast
-qed
-
-lemma ssubst_mem: "\<lbrakk>t = s; s \<in> X\<rbrakk> \<Longrightarrow> t \<in> X" by simp
-
-lemma case_sum_step:
-"case_sum (case_sum f' g') g (Inl p) = case_sum f' g' p"
-"case_sum f (case_sum f' g') (Inr p) = case_sum f' g' p"
-by auto
-
-lemma obj_one_pointE: "\<forall>x. s = x \<longrightarrow> P \<Longrightarrow> P"
-by blast
-
-lemma type_copy_obj_one_point_absE:
-  assumes "type_definition Rep Abs UNIV" "\<forall>x. s = Abs x \<longrightarrow> P" shows P
-  using type_definition.Rep_inverse[OF assms(1)]
-  by (intro mp[OF spec[OF assms(2), of "Rep s"]]) simp
-
-lemma obj_sumE_f:
-  assumes "\<forall>x. s = f (Inl x) \<longrightarrow> P" "\<forall>x. s = f (Inr x) \<longrightarrow> P"
-  shows "\<forall>x. s = f x \<longrightarrow> P"
-proof
-  fix x from assms show "s = f x \<longrightarrow> P" by (cases x) auto
-qed
-
-lemma case_sum_if:
-"case_sum f g (if p then Inl x else Inr y) = (if p then f x else g y)"
-by simp
-
-lemma prod_set_simps:
-"fsts (x, y) = {x}"
-"snds (x, y) = {y}"
-unfolding fsts_def snds_def by simp+
-
-lemma sum_set_simps:
-"setl (Inl x) = {x}"
-"setl (Inr x) = {}"
-"setr (Inl x) = {}"
-"setr (Inr x) = {x}"
-unfolding sum_set_defs by simp+
-
-lemma Inl_Inr_False: "(Inl x = Inr y) = False"
-  by simp
-
-lemma Inr_Inl_False: "(Inr x = Inl y) = False"
-  by simp
-
-lemma spec2: "\<forall>x y. P x y \<Longrightarrow> P x y"
-by blast
-
-lemma rewriteR_comp_comp: "\<lbrakk>g \<circ> h = r\<rbrakk> \<Longrightarrow> f \<circ> g \<circ> h = f \<circ> r"
-  unfolding comp_def fun_eq_iff by auto
-
-lemma rewriteR_comp_comp2: "\<lbrakk>g \<circ> h = r1 \<circ> r2; f \<circ> r1 = l\<rbrakk> \<Longrightarrow> f \<circ> g \<circ> h = l \<circ> r2"
-  unfolding comp_def fun_eq_iff by auto
-
-lemma rewriteL_comp_comp: "\<lbrakk>f \<circ> g = l\<rbrakk> \<Longrightarrow> f \<circ> (g \<circ> h) = l \<circ> h"
-  unfolding comp_def fun_eq_iff by auto
-
-lemma rewriteL_comp_comp2: "\<lbrakk>f \<circ> g = l1 \<circ> l2; l2 \<circ> h = r\<rbrakk> \<Longrightarrow> f \<circ> (g \<circ> h) = l1 \<circ> r"
-  unfolding comp_def fun_eq_iff by auto
-
-lemma convol_o: "\<langle>f, g\<rangle> \<circ> h = \<langle>f \<circ> h, g \<circ> h\<rangle>"
-  unfolding convol_def by auto
-
-lemma map_prod_o_convol: "map_prod h1 h2 \<circ> \<langle>f, g\<rangle> = \<langle>h1 \<circ> f, h2 \<circ> g\<rangle>"
-  unfolding convol_def by auto
-
-lemma map_prod_o_convol_id: "(map_prod f id \<circ> \<langle>id, g\<rangle>) x = \<langle>id \<circ> f, g\<rangle> x"
-  unfolding map_prod_o_convol id_comp comp_id ..
-
-lemma o_case_sum: "h \<circ> case_sum f g = case_sum (h \<circ> f) (h \<circ> g)"
-  unfolding comp_def by (auto split: sum.splits)
-
-lemma case_sum_o_map_sum: "case_sum f g \<circ> map_sum h1 h2 = case_sum (f \<circ> h1) (g \<circ> h2)"
-  unfolding comp_def by (auto split: sum.splits)
-
-lemma case_sum_o_map_sum_id: "(case_sum id g \<circ> map_sum f id) x = case_sum (f \<circ> id) g x"
-  unfolding case_sum_o_map_sum id_comp comp_id ..
-
-lemma rel_fun_def_butlast:
-  "rel_fun R (rel_fun S T) f g = (\<forall>x y. R x y \<longrightarrow> (rel_fun S T) (f x) (g y))"
-  unfolding rel_fun_def ..
-
-lemma subst_eq_imp: "(\<forall>a b. a = b \<longrightarrow> P a b) \<equiv> (\<forall>a. P a a)"
-  by auto
-
-lemma eq_subset: "op = \<le> (\<lambda>a b. P a b \<or> a = b)"
-  by auto
-
-lemma eq_le_Grp_id_iff: "(op = \<le> Grp (Collect R) id) = (All R)"
-  unfolding Grp_def id_apply by blast
-
-lemma Grp_id_mono_subst: "(\<And>x y. Grp P id x y \<Longrightarrow> Grp Q id (f x) (f y)) \<equiv>
-   (\<And>x. x \<in> P \<Longrightarrow> f x \<in> Q)"
-  unfolding Grp_def by rule auto
-
-lemma vimage2p_mono: "vimage2p f g R x y \<Longrightarrow> R \<le> S \<Longrightarrow> vimage2p f g S x y"
-  unfolding vimage2p_def by blast
-
-lemma vimage2p_refl: "(\<And>x. R x x) \<Longrightarrow> vimage2p f f R x x"
-  unfolding vimage2p_def by auto
-
-lemma
-  assumes "type_definition Rep Abs UNIV"
-  shows type_copy_Rep_o_Abs: "Rep \<circ> Abs = id" and type_copy_Abs_o_Rep: "Abs \<circ> Rep = id"
-  unfolding fun_eq_iff comp_apply id_apply
-    type_definition.Abs_inverse[OF assms UNIV_I] type_definition.Rep_inverse[OF assms] by simp_all
-
-lemma type_copy_map_comp0_undo:
-  assumes "type_definition Rep Abs UNIV"
-          "type_definition Rep' Abs' UNIV"
-          "type_definition Rep'' Abs'' UNIV"
-  shows "Abs' \<circ> M \<circ> Rep'' = (Abs' \<circ> M1 \<circ> Rep) \<circ> (Abs \<circ> M2 \<circ> Rep'') \<Longrightarrow> M1 \<circ> M2 = M"
-  by (rule sym) (auto simp: fun_eq_iff type_definition.Abs_inject[OF assms(2) UNIV_I UNIV_I]
-    type_definition.Abs_inverse[OF assms(1) UNIV_I]
-    type_definition.Abs_inverse[OF assms(3) UNIV_I] dest: spec[of _ "Abs'' x" for x])
-
-lemma vimage2p_id: "vimage2p id id R = R"
-  unfolding vimage2p_def by auto
-
-lemma vimage2p_comp: "vimage2p (f1 \<circ> f2) (g1 \<circ> g2) = vimage2p f2 g2 \<circ> vimage2p f1 g1"
-  unfolding fun_eq_iff vimage2p_def o_apply by simp
-
-lemma fun_cong_unused_0: "f = (\<lambda>x. g) \<Longrightarrow> f (\<lambda>x. 0) = g"
-  by (erule arg_cong)
-
-lemma inj_on_convol_ident: "inj_on (\<lambda>x. (x, f x)) X"
-  unfolding inj_on_def by simp
-
-lemma case_prod_app: "case_prod f x y = case_prod (\<lambda>l r. f l r y) x"
-  by (case_tac x) simp
-
-lemma case_sum_map_sum: "case_sum l r (map_sum f g x) = case_sum (l \<circ> f) (r \<circ> g) x"
-  by (case_tac x) simp+
-
-lemma case_prod_map_prod: "case_prod h (map_prod f g x) = case_prod (\<lambda>l r. h (f l) (g r)) x"
-  by (case_tac x) simp+
-
-lemma prod_inj_map: "inj f \<Longrightarrow> inj g \<Longrightarrow> inj (map_prod f g)"
-  by (simp add: inj_on_def)
-
-lemma eq_ifI: "(P \<longrightarrow> t = u1) \<Longrightarrow> (\<not> P \<longrightarrow> t = u2) \<Longrightarrow> t = (if P then u1 else u2)"
-  by simp
-
-ML_file "Tools/BNF/bnf_fp_util.ML"
-ML_file "Tools/BNF/bnf_fp_def_sugar_tactics.ML"
-ML_file "Tools/BNF/bnf_lfp_size.ML"
-ML_file "Tools/BNF/bnf_fp_def_sugar.ML"
-ML_file "Tools/BNF/bnf_fp_n2m_tactics.ML"
-ML_file "Tools/BNF/bnf_fp_n2m.ML"
-ML_file "Tools/BNF/bnf_fp_n2m_sugar.ML"
-
-ML_file "Tools/Function/old_size.ML"
-setup Old_Size.setup
-
-lemma size_bool[code]: "size (b\<Colon>bool) = 0"
-  by (cases b) auto
-
-lemma size_nat[simp, code]: "size (n\<Colon>nat) = n"
-  by (induct n) simp_all
-
-declare prod.size[no_atp]
-
-lemma size_sum_o_map: "size_sum g1 g2 \<circ> map_sum f1 f2 = size_sum (g1 \<circ> f1) (g2 \<circ> f2)"
-  by (rule ext) (case_tac x, auto)
-
-lemma size_prod_o_map: "size_prod g1 g2 \<circ> map_prod f1 f2 = size_prod (g1 \<circ> f1) (g2 \<circ> f2)"
-  by (rule ext) auto
-
-setup {*
-BNF_LFP_Size.register_size_global @{type_name sum} @{const_name size_sum} @{thms sum.size}
-  @{thms size_sum_o_map}
-#> BNF_LFP_Size.register_size_global @{type_name prod} @{const_name size_prod} @{thms prod.size}
-  @{thms size_prod_o_map}
-*}
-
-end