src/HOL/Data_Structures/Tree23_Set.thy
changeset 61640 44c9198f210c
parent 61588 1d2907d0ed73
child 61678 b594e9277be3
--- a/src/HOL/Data_Structures/Tree23_Set.thy	Wed Nov 11 16:42:30 2015 +0100
+++ b/src/HOL/Data_Structures/Tree23_Set.thy	Wed Nov 11 18:32:26 2015 +0100
@@ -1,372 +1,372 @@
-(* Author: Tobias Nipkow *)
-
-section \<open>A 2-3 Tree Implementation of Sets\<close>
-
-theory Tree23_Set
-imports
-  Tree23
-  Cmp
-  Set_by_Ordered
-begin
-
-fun isin :: "'a::cmp tree23 \<Rightarrow> 'a \<Rightarrow> bool" where
-"isin Leaf x = False" |
-"isin (Node2 l a r) x =
-  (case cmp x a of LT \<Rightarrow> isin l x | EQ \<Rightarrow> True | GT \<Rightarrow> isin r x)" |
-"isin (Node3 l a m b r) x =
-  (case cmp x a of LT \<Rightarrow> isin l x | EQ \<Rightarrow> True | GT \<Rightarrow> (case cmp x b of
-   LT \<Rightarrow> isin m x | EQ \<Rightarrow> True | GT \<Rightarrow> isin r x))"
-
-datatype 'a up\<^sub>i = T\<^sub>i "'a tree23" | Up\<^sub>i "'a tree23" 'a "'a tree23"
-
-fun tree\<^sub>i :: "'a up\<^sub>i \<Rightarrow> 'a tree23" where
-"tree\<^sub>i (T\<^sub>i t) = t" |
-"tree\<^sub>i (Up\<^sub>i l p r) = Node2 l p r"
-
-fun ins :: "'a::cmp \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>i" where
-"ins x Leaf = Up\<^sub>i Leaf x Leaf" |
-"ins x (Node2 l a r) =
-   (case cmp x a of
-      LT \<Rightarrow> (case ins x l of
-              T\<^sub>i l' => T\<^sub>i (Node2 l' a r)
-            | Up\<^sub>i l1 b l2 => T\<^sub>i (Node3 l1 b l2 a r)) |
-      EQ \<Rightarrow> T\<^sub>i (Node2 l x r) |
-      GT \<Rightarrow> (case ins x r of
-              T\<^sub>i r' => T\<^sub>i (Node2 l a r')
-            | Up\<^sub>i r1 b r2 => T\<^sub>i (Node3 l a r1 b r2)))" |
-"ins x (Node3 l a m b r) =
-   (case cmp x a of
-      LT \<Rightarrow> (case ins x l of
-              T\<^sub>i l' => T\<^sub>i (Node3 l' a m b r)
-            | Up\<^sub>i l1 c l2 => Up\<^sub>i (Node2 l1 c l2) a (Node2 m b r)) |
-      EQ \<Rightarrow> T\<^sub>i (Node3 l a m b r) |
-      GT \<Rightarrow> (case cmp x b of
-               GT \<Rightarrow> (case ins x r of
-                       T\<^sub>i r' => T\<^sub>i (Node3 l a m b r')
-                     | Up\<^sub>i r1 c r2 => Up\<^sub>i (Node2 l a m) b (Node2 r1 c r2)) |
-               EQ \<Rightarrow> T\<^sub>i (Node3 l a m b r) |
-               LT \<Rightarrow> (case ins x m of
-                       T\<^sub>i m' => T\<^sub>i (Node3 l a m' b r)
-                     | Up\<^sub>i m1 c m2 => Up\<^sub>i (Node2 l a m1) c (Node2 m2 b r))))"
-
-hide_const insert
-
-definition insert :: "'a::cmp \<Rightarrow> 'a tree23 \<Rightarrow> 'a tree23" where
-"insert x t = tree\<^sub>i(ins x t)"
-
-datatype 'a up\<^sub>d = T\<^sub>d "'a tree23" | Up\<^sub>d "'a tree23"
-
-fun tree\<^sub>d :: "'a up\<^sub>d \<Rightarrow> 'a tree23" where
-"tree\<^sub>d (T\<^sub>d x) = x" |
-"tree\<^sub>d (Up\<^sub>d x) = x"
-
-(* Variation: return None to signal no-change *)
-
-fun node21 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where
-"node21 (T\<^sub>d t1) a t2 = T\<^sub>d(Node2 t1 a t2)" |
-"node21 (Up\<^sub>d t1) a (Node2 t2 b t3) = Up\<^sub>d(Node3 t1 a t2 b t3)" |
-"node21 (Up\<^sub>d t1) a (Node3 t2 b t3 c t4) = T\<^sub>d(Node2 (Node2 t1 a t2) b (Node2 t3 c t4))"
-
-fun node22 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where
-"node22 t1 a (T\<^sub>d t2) = T\<^sub>d(Node2 t1 a t2)" |
-"node22 (Node2 t1 b t2) a (Up\<^sub>d t3) = Up\<^sub>d(Node3 t1 b t2 a t3)" |
-"node22 (Node3 t1 b t2 c t3) a (Up\<^sub>d t4) = T\<^sub>d(Node2 (Node2 t1 b t2) c (Node2 t3 a t4))"
-
-fun node31 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where
-"node31 (T\<^sub>d t1) a t2 b t3 = T\<^sub>d(Node3 t1 a t2 b t3)" |
-"node31 (Up\<^sub>d t1) a (Node2 t2 b t3) c t4 = T\<^sub>d(Node2 (Node3 t1 a t2 b t3) c t4)" |
-"node31 (Up\<^sub>d t1) a (Node3 t2 b t3 c t4) d t5 = T\<^sub>d(Node3 (Node2 t1 a t2) b (Node2 t3 c t4) d t5)"
-
-fun node32 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where
-"node32 t1 a (T\<^sub>d t2) b t3 = T\<^sub>d(Node3 t1 a t2 b t3)" |
-"node32 t1 a (Up\<^sub>d t2) b (Node2 t3 c t4) = T\<^sub>d(Node2 t1 a (Node3 t2 b t3 c t4))" |
-"node32 t1 a (Up\<^sub>d t2) b (Node3 t3 c t4 d t5) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))"
-
-fun node33 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where
-"node33 l a m b (T\<^sub>d r) = T\<^sub>d(Node3 l a m b r)" |
-"node33 t1 a (Node2 t2 b t3) c (Up\<^sub>d t4) = T\<^sub>d(Node2 t1 a (Node3 t2 b t3 c t4))" |
-"node33 t1 a (Node3 t2 b t3 c t4) d (Up\<^sub>d t5) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))"
-
-fun del_min :: "'a tree23 \<Rightarrow> 'a * 'a up\<^sub>d" where
-"del_min (Node2 Leaf a Leaf) = (a, Up\<^sub>d Leaf)" |
-"del_min (Node3 Leaf a Leaf b Leaf) = (a, T\<^sub>d(Node2 Leaf b Leaf))" |
-"del_min (Node2 l a r) = (let (x,l') = del_min l in (x, node21 l' a r))" |
-"del_min (Node3 l a m b r) = (let (x,l') = del_min l in (x, node31 l' a m b r))"
-
-fun del :: "'a::cmp \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d"
-where
-"del x Leaf = T\<^sub>d Leaf" |
-"del x (Node2 Leaf a Leaf) = (if x = a then Up\<^sub>d Leaf else T\<^sub>d(Node2 Leaf a Leaf))" |
-"del x (Node3 Leaf a Leaf b Leaf) = T\<^sub>d(if x = a then Node2 Leaf b Leaf
-  else if x = b then Node2 Leaf a Leaf else Node3 Leaf a Leaf b Leaf)" |
-"del x (Node2 l a r) = (case cmp x a of
-  LT \<Rightarrow> node21 (del x l) a r |
-  GT \<Rightarrow> node22 l a (del x r) |
-  EQ \<Rightarrow> let (a',t) = del_min r in node22 l a' t)" |
-"del x (Node3 l a m b r) = (case cmp x a of
-  LT \<Rightarrow> node31 (del x l) a m b r |
-  EQ \<Rightarrow> let (a',m') = del_min m in node32 l a' m' b r |
-  GT \<Rightarrow> (case cmp x b of
-          LT \<Rightarrow> node32 l a (del x m) b r |
-          EQ \<Rightarrow> let (b',r') = del_min r in node33 l a m b' r' |
-          GT \<Rightarrow> node33 l a m b (del x r)))"
-
-definition delete :: "'a::cmp \<Rightarrow> 'a tree23 \<Rightarrow> 'a tree23" where
-"delete x t = tree\<^sub>d(del x t)"
-
-
-subsection "Functional Correctness"
-
-subsubsection "Proofs for isin"
-
-lemma "sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> elems (inorder t))"
-by (induction t) (auto simp: elems_simps1 ball_Un)
-
-lemma isin_set: "sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> elems (inorder t))"
-by (induction t) (auto simp: elems_simps2)
-
-
-subsubsection "Proofs for insert"
-
-lemma inorder_ins:
-  "sorted(inorder t) \<Longrightarrow> inorder(tree\<^sub>i(ins x t)) = ins_list x (inorder t)"
-by(induction t) (auto simp: ins_list_simps split: up\<^sub>i.splits)
-
-lemma inorder_insert:
-  "sorted(inorder t) \<Longrightarrow> inorder(insert a t) = ins_list a (inorder t)"
-by(simp add: insert_def inorder_ins)
-
-
-subsubsection "Proofs for delete"
-
-lemma inorder_node21: "height r > 0 \<Longrightarrow>
-  inorder (tree\<^sub>d (node21 l' a r)) = inorder (tree\<^sub>d l') @ a # inorder r"
-by(induct l' a r rule: node21.induct) auto
-
-lemma inorder_node22: "height l > 0 \<Longrightarrow>
-  inorder (tree\<^sub>d (node22 l a r')) = inorder l @ a # inorder (tree\<^sub>d r')"
-by(induct l a r' rule: node22.induct) auto
-
-lemma inorder_node31: "height m > 0 \<Longrightarrow>
-  inorder (tree\<^sub>d (node31 l' a m b r)) = inorder (tree\<^sub>d l') @ a # inorder m @ b # inorder r"
-by(induct l' a m b r rule: node31.induct) auto
-
-lemma inorder_node32: "height r > 0 \<Longrightarrow>
-  inorder (tree\<^sub>d (node32 l a m' b r)) = inorder l @ a # inorder (tree\<^sub>d m') @ b # inorder r"
-by(induct l a m' b r rule: node32.induct) auto
-
-lemma inorder_node33: "height m > 0 \<Longrightarrow>
-  inorder (tree\<^sub>d (node33 l a m b r')) = inorder l @ a # inorder m @ b # inorder (tree\<^sub>d r')"
-by(induct l a m b r' rule: node33.induct) auto
-
-lemmas inorder_nodes = inorder_node21 inorder_node22
-  inorder_node31 inorder_node32 inorder_node33
-
-lemma del_minD:
-  "del_min t = (x,t') \<Longrightarrow> bal t \<Longrightarrow> height t > 0 \<Longrightarrow>
-  x # inorder(tree\<^sub>d t') = inorder t"
-by(induction t arbitrary: t' rule: del_min.induct)
-  (auto simp: inorder_nodes split: prod.splits)
-
-lemma inorder_del: "\<lbrakk> bal t ; sorted(inorder t) \<rbrakk> \<Longrightarrow>
-  inorder(tree\<^sub>d (del x t)) = del_list x (inorder t)"
-by(induction t rule: del.induct)
-  (auto simp: del_list_simps inorder_nodes del_minD split: prod.splits)
-
-lemma inorder_delete: "\<lbrakk> bal t ; sorted(inorder t) \<rbrakk> \<Longrightarrow>
-  inorder(delete x t) = del_list x (inorder t)"
-by(simp add: delete_def inorder_del)
-
-
-subsection \<open>Balancedness\<close>
-
-
-subsubsection "Proofs for insert"
-
-text{* First a standard proof that @{const ins} preserves @{const bal}. *}
-
-instantiation up\<^sub>i :: (type)height
-begin
-
-fun height_up\<^sub>i :: "'a up\<^sub>i \<Rightarrow> nat" where
-"height (T\<^sub>i t) = height t" |
-"height (Up\<^sub>i l a r) = height l"
-
-instance ..
-
-end
-
-lemma bal_ins: "bal t \<Longrightarrow> bal (tree\<^sub>i(ins a t)) \<and> height(ins a t) = height t"
-by (induct t) (auto split: up\<^sub>i.split) (* 15 secs in 2015 *)
-
-text{* Now an alternative proof (by Brian Huffman) that runs faster because
-two properties (balance and height) are combined in one predicate. *}
-
-inductive full :: "nat \<Rightarrow> 'a tree23 \<Rightarrow> bool" where
-"full 0 Leaf" |
-"\<lbrakk>full n l; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node2 l p r)" |
-"\<lbrakk>full n l; full n m; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node3 l p m q r)"
-
-inductive_cases full_elims:
-  "full n Leaf"
-  "full n (Node2 l p r)"
-  "full n (Node3 l p m q r)"
-
-inductive_cases full_0_elim: "full 0 t"
-inductive_cases full_Suc_elim: "full (Suc n) t"
-
-lemma full_0_iff [simp]: "full 0 t \<longleftrightarrow> t = Leaf"
-  by (auto elim: full_0_elim intro: full.intros)
-
-lemma full_Leaf_iff [simp]: "full n Leaf \<longleftrightarrow> n = 0"
-  by (auto elim: full_elims intro: full.intros)
-
-lemma full_Suc_Node2_iff [simp]:
-  "full (Suc n) (Node2 l p r) \<longleftrightarrow> full n l \<and> full n r"
-  by (auto elim: full_elims intro: full.intros)
-
-lemma full_Suc_Node3_iff [simp]:
-  "full (Suc n) (Node3 l p m q r) \<longleftrightarrow> full n l \<and> full n m \<and> full n r"
-  by (auto elim: full_elims intro: full.intros)
-
-lemma full_imp_height: "full n t \<Longrightarrow> height t = n"
-  by (induct set: full, simp_all)
-
-lemma full_imp_bal: "full n t \<Longrightarrow> bal t"
-  by (induct set: full, auto dest: full_imp_height)
-
-lemma bal_imp_full: "bal t \<Longrightarrow> full (height t) t"
-  by (induct t, simp_all)
-
-lemma bal_iff_full: "bal t \<longleftrightarrow> (\<exists>n. full n t)"
-  by (auto elim!: bal_imp_full full_imp_bal)
-
-text {* The @{const "insert"} function either preserves the height of the
-tree, or increases it by one. The constructor returned by the @{term
-"insert"} function determines which: A return value of the form @{term
-"T\<^sub>i t"} indicates that the height will be the same. A value of the
-form @{term "Up\<^sub>i l p r"} indicates an increase in height. *}
-
-fun full\<^sub>i :: "nat \<Rightarrow> 'a up\<^sub>i \<Rightarrow> bool" where
-"full\<^sub>i n (T\<^sub>i t) \<longleftrightarrow> full n t" |
-"full\<^sub>i n (Up\<^sub>i l p r) \<longleftrightarrow> full n l \<and> full n r"
-
-lemma full\<^sub>i_ins: "full n t \<Longrightarrow> full\<^sub>i n (ins a t)"
-by (induct rule: full.induct) (auto split: up\<^sub>i.split)
-
-text {* The @{const insert} operation preserves balance. *}
-
-lemma bal_insert: "bal t \<Longrightarrow> bal (insert a t)"
-unfolding bal_iff_full insert_def
-apply (erule exE)
-apply (drule full\<^sub>i_ins [of _ _ a])
-apply (cases "ins a t")
-apply (auto intro: full.intros)
-done
-
-
-subsection "Proofs for delete"
-
-instantiation up\<^sub>d :: (type)height
-begin
-
-fun height_up\<^sub>d :: "'a up\<^sub>d \<Rightarrow> nat" where
-"height (T\<^sub>d t) = height t" |
-"height (Up\<^sub>d t) = height t + 1"
-
-instance ..
-
-end
-
-lemma bal_tree\<^sub>d_node21:
-  "\<lbrakk>bal r; bal (tree\<^sub>d l'); height r = height l' \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d (node21 l' a r))"
-by(induct l' a r rule: node21.induct) auto
-
-lemma bal_tree\<^sub>d_node22:
-  "\<lbrakk>bal(tree\<^sub>d r'); bal l; height r' = height l \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d (node22 l a r'))"
-by(induct l a r' rule: node22.induct) auto
-
-lemma bal_tree\<^sub>d_node31:
-  "\<lbrakk> bal (tree\<^sub>d l'); bal m; bal r; height l' = height r; height m = height r \<rbrakk>
-  \<Longrightarrow> bal (tree\<^sub>d (node31 l' a m b r))"
-by(induct l' a m b r rule: node31.induct) auto
-
-lemma bal_tree\<^sub>d_node32:
-  "\<lbrakk> bal l; bal (tree\<^sub>d m'); bal r; height l = height r; height m' = height r \<rbrakk>
-  \<Longrightarrow> bal (tree\<^sub>d (node32 l a m' b r))"
-by(induct l a m' b r rule: node32.induct) auto
-
-lemma bal_tree\<^sub>d_node33:
-  "\<lbrakk> bal l; bal m; bal(tree\<^sub>d r'); height l = height r'; height m = height r' \<rbrakk>
-  \<Longrightarrow> bal (tree\<^sub>d (node33 l a m b r'))"
-by(induct l a m b r' rule: node33.induct) auto
-
-lemmas bals = bal_tree\<^sub>d_node21 bal_tree\<^sub>d_node22
-  bal_tree\<^sub>d_node31 bal_tree\<^sub>d_node32 bal_tree\<^sub>d_node33
-
-lemma height'_node21:
-   "height r > 0 \<Longrightarrow> height(node21 l' a r) = max (height l') (height r) + 1"
-by(induct l' a r rule: node21.induct)(simp_all)
-
-lemma height'_node22:
-   "height l > 0 \<Longrightarrow> height(node22 l a r') = max (height l) (height r') + 1"
-by(induct l a r' rule: node22.induct)(simp_all)
-
-lemma height'_node31:
-  "height m > 0 \<Longrightarrow> height(node31 l a m b r) =
-   max (height l) (max (height m) (height r)) + 1"
-by(induct l a m b r rule: node31.induct)(simp_all add: max_def)
-
-lemma height'_node32:
-  "height r > 0 \<Longrightarrow> height(node32 l a m b r) =
-   max (height l) (max (height m) (height r)) + 1"
-by(induct l a m b r rule: node32.induct)(simp_all add: max_def)
-
-lemma height'_node33:
-  "height m > 0 \<Longrightarrow> height(node33 l a m b r) =
-   max (height l) (max (height m) (height r)) + 1"
-by(induct l a m b r rule: node33.induct)(simp_all add: max_def)
-
-lemmas heights = height'_node21 height'_node22
-  height'_node31 height'_node32 height'_node33
-
-lemma height_del_min:
-  "del_min t = (x, t') \<Longrightarrow> height t > 0 \<Longrightarrow> bal t \<Longrightarrow> height t' = height t"
-by(induct t arbitrary: x t' rule: del_min.induct)
-  (auto simp: heights split: prod.splits)
-
-lemma height_del: "bal t \<Longrightarrow> height(del x t) = height t"
-by(induction x t rule: del.induct)
-  (auto simp: heights max_def height_del_min split: prod.splits)
-
-lemma bal_del_min:
-  "\<lbrakk> del_min t = (x, t'); bal t; height t > 0 \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d t')"
-by(induct t arbitrary: x t' rule: del_min.induct)
-  (auto simp: heights height_del_min bals split: prod.splits)
-
-lemma bal_tree\<^sub>d_del: "bal t \<Longrightarrow> bal(tree\<^sub>d(del x t))"
-by(induction x t rule: del.induct)
-  (auto simp: bals bal_del_min height_del height_del_min split: prod.splits)
-
-corollary bal_delete: "bal t \<Longrightarrow> bal(delete x t)"
-by(simp add: delete_def bal_tree\<^sub>d_del)
-
-
-subsection \<open>Overall Correctness\<close>
-
-interpretation Set_by_Ordered
-where empty = Leaf and isin = isin and insert = insert and delete = delete
-and inorder = inorder and inv = bal
-proof (standard, goal_cases)
-  case 2 thus ?case by(simp add: isin_set)
-next
-  case 3 thus ?case by(simp add: inorder_insert)
-next
-  case 4 thus ?case by(simp add: inorder_delete)
-next
-  case 6 thus ?case by(simp add: bal_insert)
-next
-  case 7 thus ?case by(simp add: bal_delete)
-qed simp+
-
-end
+(* Author: Tobias Nipkow *)
+
+section \<open>A 2-3 Tree Implementation of Sets\<close>
+
+theory Tree23_Set
+imports
+  Tree23
+  Cmp
+  Set_by_Ordered
+begin
+
+fun isin :: "'a::cmp tree23 \<Rightarrow> 'a \<Rightarrow> bool" where
+"isin Leaf x = False" |
+"isin (Node2 l a r) x =
+  (case cmp x a of LT \<Rightarrow> isin l x | EQ \<Rightarrow> True | GT \<Rightarrow> isin r x)" |
+"isin (Node3 l a m b r) x =
+  (case cmp x a of LT \<Rightarrow> isin l x | EQ \<Rightarrow> True | GT \<Rightarrow> (case cmp x b of
+   LT \<Rightarrow> isin m x | EQ \<Rightarrow> True | GT \<Rightarrow> isin r x))"
+
+datatype 'a up\<^sub>i = T\<^sub>i "'a tree23" | Up\<^sub>i "'a tree23" 'a "'a tree23"
+
+fun tree\<^sub>i :: "'a up\<^sub>i \<Rightarrow> 'a tree23" where
+"tree\<^sub>i (T\<^sub>i t) = t" |
+"tree\<^sub>i (Up\<^sub>i l p r) = Node2 l p r"
+
+fun ins :: "'a::cmp \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>i" where
+"ins x Leaf = Up\<^sub>i Leaf x Leaf" |
+"ins x (Node2 l a r) =
+   (case cmp x a of
+      LT \<Rightarrow> (case ins x l of
+              T\<^sub>i l' => T\<^sub>i (Node2 l' a r)
+            | Up\<^sub>i l1 b l2 => T\<^sub>i (Node3 l1 b l2 a r)) |
+      EQ \<Rightarrow> T\<^sub>i (Node2 l x r) |
+      GT \<Rightarrow> (case ins x r of
+              T\<^sub>i r' => T\<^sub>i (Node2 l a r')
+            | Up\<^sub>i r1 b r2 => T\<^sub>i (Node3 l a r1 b r2)))" |
+"ins x (Node3 l a m b r) =
+   (case cmp x a of
+      LT \<Rightarrow> (case ins x l of
+              T\<^sub>i l' => T\<^sub>i (Node3 l' a m b r)
+            | Up\<^sub>i l1 c l2 => Up\<^sub>i (Node2 l1 c l2) a (Node2 m b r)) |
+      EQ \<Rightarrow> T\<^sub>i (Node3 l a m b r) |
+      GT \<Rightarrow> (case cmp x b of
+               GT \<Rightarrow> (case ins x r of
+                       T\<^sub>i r' => T\<^sub>i (Node3 l a m b r')
+                     | Up\<^sub>i r1 c r2 => Up\<^sub>i (Node2 l a m) b (Node2 r1 c r2)) |
+               EQ \<Rightarrow> T\<^sub>i (Node3 l a m b r) |
+               LT \<Rightarrow> (case ins x m of
+                       T\<^sub>i m' => T\<^sub>i (Node3 l a m' b r)
+                     | Up\<^sub>i m1 c m2 => Up\<^sub>i (Node2 l a m1) c (Node2 m2 b r))))"
+
+hide_const insert
+
+definition insert :: "'a::cmp \<Rightarrow> 'a tree23 \<Rightarrow> 'a tree23" where
+"insert x t = tree\<^sub>i(ins x t)"
+
+datatype 'a up\<^sub>d = T\<^sub>d "'a tree23" | Up\<^sub>d "'a tree23"
+
+fun tree\<^sub>d :: "'a up\<^sub>d \<Rightarrow> 'a tree23" where
+"tree\<^sub>d (T\<^sub>d x) = x" |
+"tree\<^sub>d (Up\<^sub>d x) = x"
+
+(* Variation: return None to signal no-change *)
+
+fun node21 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where
+"node21 (T\<^sub>d t1) a t2 = T\<^sub>d(Node2 t1 a t2)" |
+"node21 (Up\<^sub>d t1) a (Node2 t2 b t3) = Up\<^sub>d(Node3 t1 a t2 b t3)" |
+"node21 (Up\<^sub>d t1) a (Node3 t2 b t3 c t4) = T\<^sub>d(Node2 (Node2 t1 a t2) b (Node2 t3 c t4))"
+
+fun node22 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where
+"node22 t1 a (T\<^sub>d t2) = T\<^sub>d(Node2 t1 a t2)" |
+"node22 (Node2 t1 b t2) a (Up\<^sub>d t3) = Up\<^sub>d(Node3 t1 b t2 a t3)" |
+"node22 (Node3 t1 b t2 c t3) a (Up\<^sub>d t4) = T\<^sub>d(Node2 (Node2 t1 b t2) c (Node2 t3 a t4))"
+
+fun node31 :: "'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where
+"node31 (T\<^sub>d t1) a t2 b t3 = T\<^sub>d(Node3 t1 a t2 b t3)" |
+"node31 (Up\<^sub>d t1) a (Node2 t2 b t3) c t4 = T\<^sub>d(Node2 (Node3 t1 a t2 b t3) c t4)" |
+"node31 (Up\<^sub>d t1) a (Node3 t2 b t3 c t4) d t5 = T\<^sub>d(Node3 (Node2 t1 a t2) b (Node2 t3 c t4) d t5)"
+
+fun node32 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d" where
+"node32 t1 a (T\<^sub>d t2) b t3 = T\<^sub>d(Node3 t1 a t2 b t3)" |
+"node32 t1 a (Up\<^sub>d t2) b (Node2 t3 c t4) = T\<^sub>d(Node2 t1 a (Node3 t2 b t3 c t4))" |
+"node32 t1 a (Up\<^sub>d t2) b (Node3 t3 c t4 d t5) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))"
+
+fun node33 :: "'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a tree23 \<Rightarrow> 'a \<Rightarrow> 'a up\<^sub>d \<Rightarrow> 'a up\<^sub>d" where
+"node33 l a m b (T\<^sub>d r) = T\<^sub>d(Node3 l a m b r)" |
+"node33 t1 a (Node2 t2 b t3) c (Up\<^sub>d t4) = T\<^sub>d(Node2 t1 a (Node3 t2 b t3 c t4))" |
+"node33 t1 a (Node3 t2 b t3 c t4) d (Up\<^sub>d t5) = T\<^sub>d(Node3 t1 a (Node2 t2 b t3) c (Node2 t4 d t5))"
+
+fun del_min :: "'a tree23 \<Rightarrow> 'a * 'a up\<^sub>d" where
+"del_min (Node2 Leaf a Leaf) = (a, Up\<^sub>d Leaf)" |
+"del_min (Node3 Leaf a Leaf b Leaf) = (a, T\<^sub>d(Node2 Leaf b Leaf))" |
+"del_min (Node2 l a r) = (let (x,l') = del_min l in (x, node21 l' a r))" |
+"del_min (Node3 l a m b r) = (let (x,l') = del_min l in (x, node31 l' a m b r))"
+
+fun del :: "'a::cmp \<Rightarrow> 'a tree23 \<Rightarrow> 'a up\<^sub>d"
+where
+"del x Leaf = T\<^sub>d Leaf" |
+"del x (Node2 Leaf a Leaf) = (if x = a then Up\<^sub>d Leaf else T\<^sub>d(Node2 Leaf a Leaf))" |
+"del x (Node3 Leaf a Leaf b Leaf) = T\<^sub>d(if x = a then Node2 Leaf b Leaf
+  else if x = b then Node2 Leaf a Leaf else Node3 Leaf a Leaf b Leaf)" |
+"del x (Node2 l a r) = (case cmp x a of
+  LT \<Rightarrow> node21 (del x l) a r |
+  GT \<Rightarrow> node22 l a (del x r) |
+  EQ \<Rightarrow> let (a',t) = del_min r in node22 l a' t)" |
+"del x (Node3 l a m b r) = (case cmp x a of
+  LT \<Rightarrow> node31 (del x l) a m b r |
+  EQ \<Rightarrow> let (a',m') = del_min m in node32 l a' m' b r |
+  GT \<Rightarrow> (case cmp x b of
+          LT \<Rightarrow> node32 l a (del x m) b r |
+          EQ \<Rightarrow> let (b',r') = del_min r in node33 l a m b' r' |
+          GT \<Rightarrow> node33 l a m b (del x r)))"
+
+definition delete :: "'a::cmp \<Rightarrow> 'a tree23 \<Rightarrow> 'a tree23" where
+"delete x t = tree\<^sub>d(del x t)"
+
+
+subsection "Functional Correctness"
+
+subsubsection "Proofs for isin"
+
+lemma "sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> elems (inorder t))"
+by (induction t) (auto simp: elems_simps1 ball_Un)
+
+lemma isin_set: "sorted(inorder t) \<Longrightarrow> isin t x = (x \<in> elems (inorder t))"
+by (induction t) (auto simp: elems_simps2)
+
+
+subsubsection "Proofs for insert"
+
+lemma inorder_ins:
+  "sorted(inorder t) \<Longrightarrow> inorder(tree\<^sub>i(ins x t)) = ins_list x (inorder t)"
+by(induction t) (auto simp: ins_list_simps split: up\<^sub>i.splits)
+
+lemma inorder_insert:
+  "sorted(inorder t) \<Longrightarrow> inorder(insert a t) = ins_list a (inorder t)"
+by(simp add: insert_def inorder_ins)
+
+
+subsubsection "Proofs for delete"
+
+lemma inorder_node21: "height r > 0 \<Longrightarrow>
+  inorder (tree\<^sub>d (node21 l' a r)) = inorder (tree\<^sub>d l') @ a # inorder r"
+by(induct l' a r rule: node21.induct) auto
+
+lemma inorder_node22: "height l > 0 \<Longrightarrow>
+  inorder (tree\<^sub>d (node22 l a r')) = inorder l @ a # inorder (tree\<^sub>d r')"
+by(induct l a r' rule: node22.induct) auto
+
+lemma inorder_node31: "height m > 0 \<Longrightarrow>
+  inorder (tree\<^sub>d (node31 l' a m b r)) = inorder (tree\<^sub>d l') @ a # inorder m @ b # inorder r"
+by(induct l' a m b r rule: node31.induct) auto
+
+lemma inorder_node32: "height r > 0 \<Longrightarrow>
+  inorder (tree\<^sub>d (node32 l a m' b r)) = inorder l @ a # inorder (tree\<^sub>d m') @ b # inorder r"
+by(induct l a m' b r rule: node32.induct) auto
+
+lemma inorder_node33: "height m > 0 \<Longrightarrow>
+  inorder (tree\<^sub>d (node33 l a m b r')) = inorder l @ a # inorder m @ b # inorder (tree\<^sub>d r')"
+by(induct l a m b r' rule: node33.induct) auto
+
+lemmas inorder_nodes = inorder_node21 inorder_node22
+  inorder_node31 inorder_node32 inorder_node33
+
+lemma del_minD:
+  "del_min t = (x,t') \<Longrightarrow> bal t \<Longrightarrow> height t > 0 \<Longrightarrow>
+  x # inorder(tree\<^sub>d t') = inorder t"
+by(induction t arbitrary: t' rule: del_min.induct)
+  (auto simp: inorder_nodes split: prod.splits)
+
+lemma inorder_del: "\<lbrakk> bal t ; sorted(inorder t) \<rbrakk> \<Longrightarrow>
+  inorder(tree\<^sub>d (del x t)) = del_list x (inorder t)"
+by(induction t rule: del.induct)
+  (auto simp: del_list_simps inorder_nodes del_minD split: prod.splits)
+
+lemma inorder_delete: "\<lbrakk> bal t ; sorted(inorder t) \<rbrakk> \<Longrightarrow>
+  inorder(delete x t) = del_list x (inorder t)"
+by(simp add: delete_def inorder_del)
+
+
+subsection \<open>Balancedness\<close>
+
+
+subsubsection "Proofs for insert"
+
+text{* First a standard proof that @{const ins} preserves @{const bal}. *}
+
+instantiation up\<^sub>i :: (type)height
+begin
+
+fun height_up\<^sub>i :: "'a up\<^sub>i \<Rightarrow> nat" where
+"height (T\<^sub>i t) = height t" |
+"height (Up\<^sub>i l a r) = height l"
+
+instance ..
+
+end
+
+lemma bal_ins: "bal t \<Longrightarrow> bal (tree\<^sub>i(ins a t)) \<and> height(ins a t) = height t"
+by (induct t) (auto split: up\<^sub>i.split) (* 15 secs in 2015 *)
+
+text{* Now an alternative proof (by Brian Huffman) that runs faster because
+two properties (balance and height) are combined in one predicate. *}
+
+inductive full :: "nat \<Rightarrow> 'a tree23 \<Rightarrow> bool" where
+"full 0 Leaf" |
+"\<lbrakk>full n l; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node2 l p r)" |
+"\<lbrakk>full n l; full n m; full n r\<rbrakk> \<Longrightarrow> full (Suc n) (Node3 l p m q r)"
+
+inductive_cases full_elims:
+  "full n Leaf"
+  "full n (Node2 l p r)"
+  "full n (Node3 l p m q r)"
+
+inductive_cases full_0_elim: "full 0 t"
+inductive_cases full_Suc_elim: "full (Suc n) t"
+
+lemma full_0_iff [simp]: "full 0 t \<longleftrightarrow> t = Leaf"
+  by (auto elim: full_0_elim intro: full.intros)
+
+lemma full_Leaf_iff [simp]: "full n Leaf \<longleftrightarrow> n = 0"
+  by (auto elim: full_elims intro: full.intros)
+
+lemma full_Suc_Node2_iff [simp]:
+  "full (Suc n) (Node2 l p r) \<longleftrightarrow> full n l \<and> full n r"
+  by (auto elim: full_elims intro: full.intros)
+
+lemma full_Suc_Node3_iff [simp]:
+  "full (Suc n) (Node3 l p m q r) \<longleftrightarrow> full n l \<and> full n m \<and> full n r"
+  by (auto elim: full_elims intro: full.intros)
+
+lemma full_imp_height: "full n t \<Longrightarrow> height t = n"
+  by (induct set: full, simp_all)
+
+lemma full_imp_bal: "full n t \<Longrightarrow> bal t"
+  by (induct set: full, auto dest: full_imp_height)
+
+lemma bal_imp_full: "bal t \<Longrightarrow> full (height t) t"
+  by (induct t, simp_all)
+
+lemma bal_iff_full: "bal t \<longleftrightarrow> (\<exists>n. full n t)"
+  by (auto elim!: bal_imp_full full_imp_bal)
+
+text {* The @{const "insert"} function either preserves the height of the
+tree, or increases it by one. The constructor returned by the @{term
+"insert"} function determines which: A return value of the form @{term
+"T\<^sub>i t"} indicates that the height will be the same. A value of the
+form @{term "Up\<^sub>i l p r"} indicates an increase in height. *}
+
+fun full\<^sub>i :: "nat \<Rightarrow> 'a up\<^sub>i \<Rightarrow> bool" where
+"full\<^sub>i n (T\<^sub>i t) \<longleftrightarrow> full n t" |
+"full\<^sub>i n (Up\<^sub>i l p r) \<longleftrightarrow> full n l \<and> full n r"
+
+lemma full\<^sub>i_ins: "full n t \<Longrightarrow> full\<^sub>i n (ins a t)"
+by (induct rule: full.induct) (auto split: up\<^sub>i.split)
+
+text {* The @{const insert} operation preserves balance. *}
+
+lemma bal_insert: "bal t \<Longrightarrow> bal (insert a t)"
+unfolding bal_iff_full insert_def
+apply (erule exE)
+apply (drule full\<^sub>i_ins [of _ _ a])
+apply (cases "ins a t")
+apply (auto intro: full.intros)
+done
+
+
+subsection "Proofs for delete"
+
+instantiation up\<^sub>d :: (type)height
+begin
+
+fun height_up\<^sub>d :: "'a up\<^sub>d \<Rightarrow> nat" where
+"height (T\<^sub>d t) = height t" |
+"height (Up\<^sub>d t) = height t + 1"
+
+instance ..
+
+end
+
+lemma bal_tree\<^sub>d_node21:
+  "\<lbrakk>bal r; bal (tree\<^sub>d l'); height r = height l' \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d (node21 l' a r))"
+by(induct l' a r rule: node21.induct) auto
+
+lemma bal_tree\<^sub>d_node22:
+  "\<lbrakk>bal(tree\<^sub>d r'); bal l; height r' = height l \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d (node22 l a r'))"
+by(induct l a r' rule: node22.induct) auto
+
+lemma bal_tree\<^sub>d_node31:
+  "\<lbrakk> bal (tree\<^sub>d l'); bal m; bal r; height l' = height r; height m = height r \<rbrakk>
+  \<Longrightarrow> bal (tree\<^sub>d (node31 l' a m b r))"
+by(induct l' a m b r rule: node31.induct) auto
+
+lemma bal_tree\<^sub>d_node32:
+  "\<lbrakk> bal l; bal (tree\<^sub>d m'); bal r; height l = height r; height m' = height r \<rbrakk>
+  \<Longrightarrow> bal (tree\<^sub>d (node32 l a m' b r))"
+by(induct l a m' b r rule: node32.induct) auto
+
+lemma bal_tree\<^sub>d_node33:
+  "\<lbrakk> bal l; bal m; bal(tree\<^sub>d r'); height l = height r'; height m = height r' \<rbrakk>
+  \<Longrightarrow> bal (tree\<^sub>d (node33 l a m b r'))"
+by(induct l a m b r' rule: node33.induct) auto
+
+lemmas bals = bal_tree\<^sub>d_node21 bal_tree\<^sub>d_node22
+  bal_tree\<^sub>d_node31 bal_tree\<^sub>d_node32 bal_tree\<^sub>d_node33
+
+lemma height'_node21:
+   "height r > 0 \<Longrightarrow> height(node21 l' a r) = max (height l') (height r) + 1"
+by(induct l' a r rule: node21.induct)(simp_all)
+
+lemma height'_node22:
+   "height l > 0 \<Longrightarrow> height(node22 l a r') = max (height l) (height r') + 1"
+by(induct l a r' rule: node22.induct)(simp_all)
+
+lemma height'_node31:
+  "height m > 0 \<Longrightarrow> height(node31 l a m b r) =
+   max (height l) (max (height m) (height r)) + 1"
+by(induct l a m b r rule: node31.induct)(simp_all add: max_def)
+
+lemma height'_node32:
+  "height r > 0 \<Longrightarrow> height(node32 l a m b r) =
+   max (height l) (max (height m) (height r)) + 1"
+by(induct l a m b r rule: node32.induct)(simp_all add: max_def)
+
+lemma height'_node33:
+  "height m > 0 \<Longrightarrow> height(node33 l a m b r) =
+   max (height l) (max (height m) (height r)) + 1"
+by(induct l a m b r rule: node33.induct)(simp_all add: max_def)
+
+lemmas heights = height'_node21 height'_node22
+  height'_node31 height'_node32 height'_node33
+
+lemma height_del_min:
+  "del_min t = (x, t') \<Longrightarrow> height t > 0 \<Longrightarrow> bal t \<Longrightarrow> height t' = height t"
+by(induct t arbitrary: x t' rule: del_min.induct)
+  (auto simp: heights split: prod.splits)
+
+lemma height_del: "bal t \<Longrightarrow> height(del x t) = height t"
+by(induction x t rule: del.induct)
+  (auto simp: heights max_def height_del_min split: prod.splits)
+
+lemma bal_del_min:
+  "\<lbrakk> del_min t = (x, t'); bal t; height t > 0 \<rbrakk> \<Longrightarrow> bal (tree\<^sub>d t')"
+by(induct t arbitrary: x t' rule: del_min.induct)
+  (auto simp: heights height_del_min bals split: prod.splits)
+
+lemma bal_tree\<^sub>d_del: "bal t \<Longrightarrow> bal(tree\<^sub>d(del x t))"
+by(induction x t rule: del.induct)
+  (auto simp: bals bal_del_min height_del height_del_min split: prod.splits)
+
+corollary bal_delete: "bal t \<Longrightarrow> bal(delete x t)"
+by(simp add: delete_def bal_tree\<^sub>d_del)
+
+
+subsection \<open>Overall Correctness\<close>
+
+interpretation Set_by_Ordered
+where empty = Leaf and isin = isin and insert = insert and delete = delete
+and inorder = inorder and inv = bal
+proof (standard, goal_cases)
+  case 2 thus ?case by(simp add: isin_set)
+next
+  case 3 thus ?case by(simp add: inorder_insert)
+next
+  case 4 thus ?case by(simp add: inorder_delete)
+next
+  case 6 thus ?case by(simp add: bal_insert)
+next
+  case 7 thus ?case by(simp add: bal_delete)
+qed simp+
+
+end