src/HOL/Multivariate_Analysis/Caratheodory.thy
changeset 63626 44ce6b524ff3
parent 63040 eb4ddd18d635
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Multivariate_Analysis/Caratheodory.thy	Fri Aug 05 18:34:57 2016 +0200
@@ -0,0 +1,891 @@
+(*  Title:      HOL/Probability/Caratheodory.thy
+    Author:     Lawrence C Paulson
+    Author:     Johannes Hölzl, TU München
+*)
+
+section \<open>Caratheodory Extension Theorem\<close>
+
+theory Caratheodory
+  imports Measure_Space
+begin
+
+text \<open>
+  Originally from the Hurd/Coble measure theory development, translated by Lawrence Paulson.
+\<close>
+
+lemma suminf_ennreal_2dimen:
+  fixes f:: "nat \<times> nat \<Rightarrow> ennreal"
+  assumes "\<And>m. g m = (\<Sum>n. f (m,n))"
+  shows "(\<Sum>i. f (prod_decode i)) = suminf g"
+proof -
+  have g_def: "g = (\<lambda>m. (\<Sum>n. f (m,n)))"
+    using assms by (simp add: fun_eq_iff)
+  have reindex: "\<And>B. (\<Sum>x\<in>B. f (prod_decode x)) = setsum f (prod_decode ` B)"
+    by (simp add: setsum.reindex[OF inj_prod_decode] comp_def)
+  have "(SUP n. \<Sum>i<n. f (prod_decode i)) = (SUP p : UNIV \<times> UNIV. \<Sum>i<fst p. \<Sum>n<snd p. f (i, n))"
+  proof (intro SUP_eq; clarsimp simp: setsum.cartesian_product reindex)
+    fix n
+    let ?M = "\<lambda>f. Suc (Max (f ` prod_decode ` {..<n}))"
+    { fix a b x assume "x < n" and [symmetric]: "(a, b) = prod_decode x"
+      then have "a < ?M fst" "b < ?M snd"
+        by (auto intro!: Max_ge le_imp_less_Suc image_eqI) }
+    then have "setsum f (prod_decode ` {..<n}) \<le> setsum f ({..<?M fst} \<times> {..<?M snd})"
+      by (auto intro!: setsum_mono3)
+    then show "\<exists>a b. setsum f (prod_decode ` {..<n}) \<le> setsum f ({..<a} \<times> {..<b})" by auto
+  next
+    fix a b
+    let ?M = "prod_decode ` {..<Suc (Max (prod_encode ` ({..<a} \<times> {..<b})))}"
+    { fix a' b' assume "a' < a" "b' < b" then have "(a', b') \<in> ?M"
+        by (auto intro!: Max_ge le_imp_less_Suc image_eqI[where x="prod_encode (a', b')"]) }
+    then have "setsum f ({..<a} \<times> {..<b}) \<le> setsum f ?M"
+      by (auto intro!: setsum_mono3)
+    then show "\<exists>n. setsum f ({..<a} \<times> {..<b}) \<le> setsum f (prod_decode ` {..<n})"
+      by auto
+  qed
+  also have "\<dots> = (SUP p. \<Sum>i<p. \<Sum>n. f (i, n))"
+    unfolding suminf_setsum[OF summableI, symmetric]
+    by (simp add: suminf_eq_SUP SUP_pair setsum.commute[of _ "{..< fst _}"])
+  finally show ?thesis unfolding g_def
+    by (simp add: suminf_eq_SUP)
+qed
+
+subsection \<open>Characterizations of Measures\<close>
+
+definition outer_measure_space where
+  "outer_measure_space M f \<longleftrightarrow> positive M f \<and> increasing M f \<and> countably_subadditive M f"
+
+subsubsection \<open>Lambda Systems\<close>
+
+definition lambda_system :: "'a set \<Rightarrow> 'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> 'a set set"
+where
+  "lambda_system \<Omega> M f = {l \<in> M. \<forall>x \<in> M. f (l \<inter> x) + f ((\<Omega> - l) \<inter> x) = f x}"
+
+lemma (in algebra) lambda_system_eq:
+  "lambda_system \<Omega> M f = {l \<in> M. \<forall>x \<in> M. f (x \<inter> l) + f (x - l) = f x}"
+proof -
+  have [simp]: "\<And>l x. l \<in> M \<Longrightarrow> x \<in> M \<Longrightarrow> (\<Omega> - l) \<inter> x = x - l"
+    by (metis Int_Diff Int_absorb1 Int_commute sets_into_space)
+  show ?thesis
+    by (auto simp add: lambda_system_def) (metis Int_commute)+
+qed
+
+lemma (in algebra) lambda_system_empty: "positive M f \<Longrightarrow> {} \<in> lambda_system \<Omega> M f"
+  by (auto simp add: positive_def lambda_system_eq)
+
+lemma lambda_system_sets: "x \<in> lambda_system \<Omega> M f \<Longrightarrow> x \<in> M"
+  by (simp add: lambda_system_def)
+
+lemma (in algebra) lambda_system_Compl:
+  fixes f:: "'a set \<Rightarrow> ennreal"
+  assumes x: "x \<in> lambda_system \<Omega> M f"
+  shows "\<Omega> - x \<in> lambda_system \<Omega> M f"
+proof -
+  have "x \<subseteq> \<Omega>"
+    by (metis sets_into_space lambda_system_sets x)
+  hence "\<Omega> - (\<Omega> - x) = x"
+    by (metis double_diff equalityE)
+  with x show ?thesis
+    by (force simp add: lambda_system_def ac_simps)
+qed
+
+lemma (in algebra) lambda_system_Int:
+  fixes f:: "'a set \<Rightarrow> ennreal"
+  assumes xl: "x \<in> lambda_system \<Omega> M f" and yl: "y \<in> lambda_system \<Omega> M f"
+  shows "x \<inter> y \<in> lambda_system \<Omega> M f"
+proof -
+  from xl yl show ?thesis
+  proof (auto simp add: positive_def lambda_system_eq Int)
+    fix u
+    assume x: "x \<in> M" and y: "y \<in> M" and u: "u \<in> M"
+       and fx: "\<forall>z\<in>M. f (z \<inter> x) + f (z - x) = f z"
+       and fy: "\<forall>z\<in>M. f (z \<inter> y) + f (z - y) = f z"
+    have "u - x \<inter> y \<in> M"
+      by (metis Diff Diff_Int Un u x y)
+    moreover
+    have "(u - (x \<inter> y)) \<inter> y = u \<inter> y - x" by blast
+    moreover
+    have "u - x \<inter> y - y = u - y" by blast
+    ultimately
+    have ey: "f (u - x \<inter> y) = f (u \<inter> y - x) + f (u - y)" using fy
+      by force
+    have "f (u \<inter> (x \<inter> y)) + f (u - x \<inter> y)
+          = (f (u \<inter> (x \<inter> y)) + f (u \<inter> y - x)) + f (u - y)"
+      by (simp add: ey ac_simps)
+    also have "... =  (f ((u \<inter> y) \<inter> x) + f (u \<inter> y - x)) + f (u - y)"
+      by (simp add: Int_ac)
+    also have "... = f (u \<inter> y) + f (u - y)"
+      using fx [THEN bspec, of "u \<inter> y"] Int y u
+      by force
+    also have "... = f u"
+      by (metis fy u)
+    finally show "f (u \<inter> (x \<inter> y)) + f (u - x \<inter> y) = f u" .
+  qed
+qed
+
+lemma (in algebra) lambda_system_Un:
+  fixes f:: "'a set \<Rightarrow> ennreal"
+  assumes xl: "x \<in> lambda_system \<Omega> M f" and yl: "y \<in> lambda_system \<Omega> M f"
+  shows "x \<union> y \<in> lambda_system \<Omega> M f"
+proof -
+  have "(\<Omega> - x) \<inter> (\<Omega> - y) \<in> M"
+    by (metis Diff_Un Un compl_sets lambda_system_sets xl yl)
+  moreover
+  have "x \<union> y = \<Omega> - ((\<Omega> - x) \<inter> (\<Omega> - y))"
+    by auto (metis subsetD lambda_system_sets sets_into_space xl yl)+
+  ultimately show ?thesis
+    by (metis lambda_system_Compl lambda_system_Int xl yl)
+qed
+
+lemma (in algebra) lambda_system_algebra:
+  "positive M f \<Longrightarrow> algebra \<Omega> (lambda_system \<Omega> M f)"
+  apply (auto simp add: algebra_iff_Un)
+  apply (metis lambda_system_sets set_mp sets_into_space)
+  apply (metis lambda_system_empty)
+  apply (metis lambda_system_Compl)
+  apply (metis lambda_system_Un)
+  done
+
+lemma (in algebra) lambda_system_strong_additive:
+  assumes z: "z \<in> M" and disj: "x \<inter> y = {}"
+      and xl: "x \<in> lambda_system \<Omega> M f" and yl: "y \<in> lambda_system \<Omega> M f"
+  shows "f (z \<inter> (x \<union> y)) = f (z \<inter> x) + f (z \<inter> y)"
+proof -
+  have "z \<inter> x = (z \<inter> (x \<union> y)) \<inter> x" using disj by blast
+  moreover
+  have "z \<inter> y = (z \<inter> (x \<union> y)) - x" using disj by blast
+  moreover
+  have "(z \<inter> (x \<union> y)) \<in> M"
+    by (metis Int Un lambda_system_sets xl yl z)
+  ultimately show ?thesis using xl yl
+    by (simp add: lambda_system_eq)
+qed
+
+lemma (in algebra) lambda_system_additive: "additive (lambda_system \<Omega> M f) f"
+proof (auto simp add: additive_def)
+  fix x and y
+  assume disj: "x \<inter> y = {}"
+     and xl: "x \<in> lambda_system \<Omega> M f" and yl: "y \<in> lambda_system \<Omega> M f"
+  hence  "x \<in> M" "y \<in> M" by (blast intro: lambda_system_sets)+
+  thus "f (x \<union> y) = f x + f y"
+    using lambda_system_strong_additive [OF top disj xl yl]
+    by (simp add: Un)
+qed
+
+lemma lambda_system_increasing: "increasing M f \<Longrightarrow> increasing (lambda_system \<Omega> M f) f"
+  by (simp add: increasing_def lambda_system_def)
+
+lemma lambda_system_positive: "positive M f \<Longrightarrow> positive (lambda_system \<Omega> M f) f"
+  by (simp add: positive_def lambda_system_def)
+
+lemma (in algebra) lambda_system_strong_sum:
+  fixes A:: "nat \<Rightarrow> 'a set" and f :: "'a set \<Rightarrow> ennreal"
+  assumes f: "positive M f" and a: "a \<in> M"
+      and A: "range A \<subseteq> lambda_system \<Omega> M f"
+      and disj: "disjoint_family A"
+  shows  "(\<Sum>i = 0..<n. f (a \<inter>A i)) = f (a \<inter> (\<Union>i\<in>{0..<n}. A i))"
+proof (induct n)
+  case 0 show ?case using f by (simp add: positive_def)
+next
+  case (Suc n)
+  have 2: "A n \<inter> UNION {0..<n} A = {}" using disj
+    by (force simp add: disjoint_family_on_def neq_iff)
+  have 3: "A n \<in> lambda_system \<Omega> M f" using A
+    by blast
+  interpret l: algebra \<Omega> "lambda_system \<Omega> M f"
+    using f by (rule lambda_system_algebra)
+  have 4: "UNION {0..<n} A \<in> lambda_system \<Omega> M f"
+    using A l.UNION_in_sets by simp
+  from Suc.hyps show ?case
+    by (simp add: atLeastLessThanSuc lambda_system_strong_additive [OF a 2 3 4])
+qed
+
+lemma (in sigma_algebra) lambda_system_caratheodory:
+  assumes oms: "outer_measure_space M f"
+      and A: "range A \<subseteq> lambda_system \<Omega> M f"
+      and disj: "disjoint_family A"
+  shows  "(\<Union>i. A i) \<in> lambda_system \<Omega> M f \<and> (\<Sum>i. f (A i)) = f (\<Union>i. A i)"
+proof -
+  have pos: "positive M f" and inc: "increasing M f"
+   and csa: "countably_subadditive M f"
+    by (metis oms outer_measure_space_def)+
+  have sa: "subadditive M f"
+    by (metis countably_subadditive_subadditive csa pos)
+  have A': "\<And>S. A`S \<subseteq> (lambda_system \<Omega> M f)" using A
+    by auto
+  interpret ls: algebra \<Omega> "lambda_system \<Omega> M f"
+    using pos by (rule lambda_system_algebra)
+  have A'': "range A \<subseteq> M"
+     by (metis A image_subset_iff lambda_system_sets)
+
+  have U_in: "(\<Union>i. A i) \<in> M"
+    by (metis A'' countable_UN)
+  have U_eq: "f (\<Union>i. A i) = (\<Sum>i. f (A i))"
+  proof (rule antisym)
+    show "f (\<Union>i. A i) \<le> (\<Sum>i. f (A i))"
+      using csa[unfolded countably_subadditive_def] A'' disj U_in by auto
+    have dis: "\<And>N. disjoint_family_on A {..<N}" by (intro disjoint_family_on_mono[OF _ disj]) auto
+    show "(\<Sum>i. f (A i)) \<le> f (\<Union>i. A i)"
+      using ls.additive_sum [OF lambda_system_positive[OF pos] lambda_system_additive _ A' dis] A''
+      by (intro suminf_le_const[OF summableI]) (auto intro!: increasingD[OF inc] countable_UN)
+  qed
+  have "f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i)) = f a"
+    if a [iff]: "a \<in> M" for a
+  proof (rule antisym)
+    have "range (\<lambda>i. a \<inter> A i) \<subseteq> M" using A''
+      by blast
+    moreover
+    have "disjoint_family (\<lambda>i. a \<inter> A i)" using disj
+      by (auto simp add: disjoint_family_on_def)
+    moreover
+    have "a \<inter> (\<Union>i. A i) \<in> M"
+      by (metis Int U_in a)
+    ultimately
+    have "f (a \<inter> (\<Union>i. A i)) \<le> (\<Sum>i. f (a \<inter> A i))"
+      using csa[unfolded countably_subadditive_def, rule_format, of "(\<lambda>i. a \<inter> A i)"]
+      by (simp add: o_def)
+    hence "f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i)) \<le> (\<Sum>i. f (a \<inter> A i)) + f (a - (\<Union>i. A i))"
+      by (rule add_right_mono)
+    also have "\<dots> \<le> f a"
+    proof (intro ennreal_suminf_bound_add)
+      fix n
+      have UNION_in: "(\<Union>i\<in>{0..<n}. A i) \<in> M"
+        by (metis A'' UNION_in_sets)
+      have le_fa: "f (UNION {0..<n} A \<inter> a) \<le> f a" using A''
+        by (blast intro: increasingD [OF inc] A'' UNION_in_sets)
+      have ls: "(\<Union>i\<in>{0..<n}. A i) \<in> lambda_system \<Omega> M f"
+        using ls.UNION_in_sets by (simp add: A)
+      hence eq_fa: "f a = f (a \<inter> (\<Union>i\<in>{0..<n}. A i)) + f (a - (\<Union>i\<in>{0..<n}. A i))"
+        by (simp add: lambda_system_eq UNION_in)
+      have "f (a - (\<Union>i. A i)) \<le> f (a - (\<Union>i\<in>{0..<n}. A i))"
+        by (blast intro: increasingD [OF inc] UNION_in U_in)
+      thus "(\<Sum>i<n. f (a \<inter> A i)) + f (a - (\<Union>i. A i)) \<le> f a"
+        by (simp add: lambda_system_strong_sum pos A disj eq_fa add_left_mono atLeast0LessThan[symmetric])
+    qed
+    finally show "f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i)) \<le> f a"
+      by simp
+  next
+    have "f a \<le> f (a \<inter> (\<Union>i. A i) \<union> (a - (\<Union>i. A i)))"
+      by (blast intro:  increasingD [OF inc] U_in)
+    also have "... \<le>  f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i))"
+      by (blast intro: subadditiveD [OF sa] U_in)
+    finally show "f a \<le> f (a \<inter> (\<Union>i. A i)) + f (a - (\<Union>i. A i))" .
+  qed
+  thus  ?thesis
+    by (simp add: lambda_system_eq sums_iff U_eq U_in)
+qed
+
+lemma (in sigma_algebra) caratheodory_lemma:
+  assumes oms: "outer_measure_space M f"
+  defines "L \<equiv> lambda_system \<Omega> M f"
+  shows "measure_space \<Omega> L f"
+proof -
+  have pos: "positive M f"
+    by (metis oms outer_measure_space_def)
+  have alg: "algebra \<Omega> L"
+    using lambda_system_algebra [of f, OF pos]
+    by (simp add: algebra_iff_Un L_def)
+  then
+  have "sigma_algebra \<Omega> L"
+    using lambda_system_caratheodory [OF oms]
+    by (simp add: sigma_algebra_disjoint_iff L_def)
+  moreover
+  have "countably_additive L f" "positive L f"
+    using pos lambda_system_caratheodory [OF oms]
+    by (auto simp add: lambda_system_sets L_def countably_additive_def positive_def)
+  ultimately
+  show ?thesis
+    using pos by (simp add: measure_space_def)
+qed
+
+definition outer_measure :: "'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> 'a set \<Rightarrow> ennreal" where
+   "outer_measure M f X =
+     (INF A:{A. range A \<subseteq> M \<and> disjoint_family A \<and> X \<subseteq> (\<Union>i. A i)}. \<Sum>i. f (A i))"
+
+lemma (in ring_of_sets) outer_measure_agrees:
+  assumes posf: "positive M f" and ca: "countably_additive M f" and s: "s \<in> M"
+  shows "outer_measure M f s = f s"
+  unfolding outer_measure_def
+proof (safe intro!: antisym INF_greatest)
+  fix A :: "nat \<Rightarrow> 'a set" assume A: "range A \<subseteq> M" and dA: "disjoint_family A" and sA: "s \<subseteq> (\<Union>x. A x)"
+  have inc: "increasing M f"
+    by (metis additive_increasing ca countably_additive_additive posf)
+  have "f s = f (\<Union>i. A i \<inter> s)"
+    using sA by (auto simp: Int_absorb1)
+  also have "\<dots> = (\<Sum>i. f (A i \<inter> s))"
+    using sA dA A s
+    by (intro ca[unfolded countably_additive_def, rule_format, symmetric])
+       (auto simp: Int_absorb1 disjoint_family_on_def)
+  also have "... \<le> (\<Sum>i. f (A i))"
+    using A s by (auto intro!: suminf_le increasingD[OF inc])
+  finally show "f s \<le> (\<Sum>i. f (A i))" .
+next
+  have "(\<Sum>i. f (if i = 0 then s else {})) \<le> f s"
+    using positiveD1[OF posf] by (subst suminf_finite[of "{0}"]) auto
+  with s show "(INF A:{A. range A \<subseteq> M \<and> disjoint_family A \<and> s \<subseteq> UNION UNIV A}. \<Sum>i. f (A i)) \<le> f s"
+    by (intro INF_lower2[of "\<lambda>i. if i = 0 then s else {}"])
+       (auto simp: disjoint_family_on_def)
+qed
+
+lemma outer_measure_empty:
+  "positive M f \<Longrightarrow> {} \<in> M \<Longrightarrow> outer_measure M f {} = 0"
+  unfolding outer_measure_def
+  by (intro antisym INF_lower2[of  "\<lambda>_. {}"]) (auto simp: disjoint_family_on_def positive_def)
+
+lemma (in ring_of_sets) positive_outer_measure:
+  assumes "positive M f" shows "positive (Pow \<Omega>) (outer_measure M f)"
+  unfolding positive_def by (auto simp: assms outer_measure_empty)
+
+lemma (in ring_of_sets) increasing_outer_measure: "increasing (Pow \<Omega>) (outer_measure M f)"
+  by (force simp: increasing_def outer_measure_def intro!: INF_greatest intro: INF_lower)
+
+lemma (in ring_of_sets) outer_measure_le:
+  assumes pos: "positive M f" and inc: "increasing M f" and A: "range A \<subseteq> M" and X: "X \<subseteq> (\<Union>i. A i)"
+  shows "outer_measure M f X \<le> (\<Sum>i. f (A i))"
+  unfolding outer_measure_def
+proof (safe intro!: INF_lower2[of "disjointed A"] del: subsetI)
+  show dA: "range (disjointed A) \<subseteq> M"
+    by (auto intro!: A range_disjointed_sets)
+  have "\<forall>n. f (disjointed A n) \<le> f (A n)"
+    by (metis increasingD [OF inc] UNIV_I dA image_subset_iff disjointed_subset A)
+  then show "(\<Sum>i. f (disjointed A i)) \<le> (\<Sum>i. f (A i))"
+    by (blast intro!: suminf_le)
+qed (auto simp: X UN_disjointed_eq disjoint_family_disjointed)
+
+lemma (in ring_of_sets) outer_measure_close:
+  "outer_measure M f X < e \<Longrightarrow> \<exists>A. range A \<subseteq> M \<and> disjoint_family A \<and> X \<subseteq> (\<Union>i. A i) \<and> (\<Sum>i. f (A i)) < e"
+  unfolding outer_measure_def INF_less_iff by auto
+
+lemma (in ring_of_sets) countably_subadditive_outer_measure:
+  assumes posf: "positive M f" and inc: "increasing M f"
+  shows "countably_subadditive (Pow \<Omega>) (outer_measure M f)"
+proof (simp add: countably_subadditive_def, safe)
+  fix A :: "nat \<Rightarrow> _" assume A: "range A \<subseteq> Pow (\<Omega>)" and sb: "(\<Union>i. A i) \<subseteq> \<Omega>"
+  let ?O = "outer_measure M f"
+  show "?O (\<Union>i. A i) \<le> (\<Sum>n. ?O (A n))"
+  proof (rule ennreal_le_epsilon)
+    fix b and e :: real assume "0 < e" "(\<Sum>n. outer_measure M f (A n)) < top"
+    then have *: "\<And>n. outer_measure M f (A n) < outer_measure M f (A n) + e * (1/2)^Suc n"
+      by (auto simp add: less_top dest!: ennreal_suminf_lessD)
+    obtain B
+      where B: "\<And>n. range (B n) \<subseteq> M"
+      and sbB: "\<And>n. A n \<subseteq> (\<Union>i. B n i)"
+      and Ble: "\<And>n. (\<Sum>i. f (B n i)) \<le> ?O (A n) + e * (1/2)^(Suc n)"
+      by (metis less_imp_le outer_measure_close[OF *])
+
+    define C where "C = case_prod B o prod_decode"
+    from B have B_in_M: "\<And>i j. B i j \<in> M"
+      by (rule range_subsetD)
+    then have C: "range C \<subseteq> M"
+      by (auto simp add: C_def split_def)
+    have A_C: "(\<Union>i. A i) \<subseteq> (\<Union>i. C i)"
+      using sbB by (auto simp add: C_def subset_eq) (metis prod.case prod_encode_inverse)
+
+    have "?O (\<Union>i. A i) \<le> ?O (\<Union>i. C i)"
+      using A_C A C by (intro increasing_outer_measure[THEN increasingD]) (auto dest!: sets_into_space)
+    also have "\<dots> \<le> (\<Sum>i. f (C i))"
+      using C by (intro outer_measure_le[OF posf inc]) auto
+    also have "\<dots> = (\<Sum>n. \<Sum>i. f (B n i))"
+      using B_in_M unfolding C_def comp_def by (intro suminf_ennreal_2dimen) auto
+    also have "\<dots> \<le> (\<Sum>n. ?O (A n) + e * (1/2) ^ Suc n)"
+      using B_in_M by (intro suminf_le suminf_nonneg allI Ble) auto
+    also have "... = (\<Sum>n. ?O (A n)) + (\<Sum>n. ennreal e * ennreal ((1/2) ^ Suc n))"
+      using \<open>0 < e\<close> by (subst suminf_add[symmetric])
+                       (auto simp del: ennreal_suminf_cmult simp add: ennreal_mult[symmetric])
+    also have "\<dots> = (\<Sum>n. ?O (A n)) + e"
+      unfolding ennreal_suminf_cmult
+      by (subst suminf_ennreal_eq[OF zero_le_power power_half_series]) auto
+    finally show "?O (\<Union>i. A i) \<le> (\<Sum>n. ?O (A n)) + e" .
+  qed
+qed
+
+lemma (in ring_of_sets) outer_measure_space_outer_measure:
+  "positive M f \<Longrightarrow> increasing M f \<Longrightarrow> outer_measure_space (Pow \<Omega>) (outer_measure M f)"
+  by (simp add: outer_measure_space_def
+    positive_outer_measure increasing_outer_measure countably_subadditive_outer_measure)
+
+lemma (in ring_of_sets) algebra_subset_lambda_system:
+  assumes posf: "positive M f" and inc: "increasing M f"
+      and add: "additive M f"
+  shows "M \<subseteq> lambda_system \<Omega> (Pow \<Omega>) (outer_measure M f)"
+proof (auto dest: sets_into_space
+            simp add: algebra.lambda_system_eq [OF algebra_Pow])
+  fix x s assume x: "x \<in> M" and s: "s \<subseteq> \<Omega>"
+  have [simp]: "\<And>x. x \<in> M \<Longrightarrow> s \<inter> (\<Omega> - x) = s - x" using s
+    by blast
+  have "outer_measure M f (s \<inter> x) + outer_measure M f (s - x) \<le> outer_measure M f s"
+    unfolding outer_measure_def[of M f s]
+  proof (safe intro!: INF_greatest)
+    fix A :: "nat \<Rightarrow> 'a set" assume A: "disjoint_family A" "range A \<subseteq> M" "s \<subseteq> (\<Union>i. A i)"
+    have "outer_measure M f (s \<inter> x) \<le> (\<Sum>i. f (A i \<inter> x))"
+      unfolding outer_measure_def
+    proof (safe intro!: INF_lower2[of "\<lambda>i. A i \<inter> x"])
+      from A(1) show "disjoint_family (\<lambda>i. A i \<inter> x)"
+        by (rule disjoint_family_on_bisimulation) auto
+    qed (insert x A, auto)
+    moreover
+    have "outer_measure M f (s - x) \<le> (\<Sum>i. f (A i - x))"
+      unfolding outer_measure_def
+    proof (safe intro!: INF_lower2[of "\<lambda>i. A i - x"])
+      from A(1) show "disjoint_family (\<lambda>i. A i - x)"
+        by (rule disjoint_family_on_bisimulation) auto
+    qed (insert x A, auto)
+    ultimately have "outer_measure M f (s \<inter> x) + outer_measure M f (s - x) \<le>
+        (\<Sum>i. f (A i \<inter> x)) + (\<Sum>i. f (A i - x))" by (rule add_mono)
+    also have "\<dots> = (\<Sum>i. f (A i \<inter> x) + f (A i - x))"
+      using A(2) x posf by (subst suminf_add) (auto simp: positive_def)
+    also have "\<dots> = (\<Sum>i. f (A i))"
+      using A x
+      by (subst add[THEN additiveD, symmetric])
+         (auto intro!: arg_cong[where f=suminf] arg_cong[where f=f])
+    finally show "outer_measure M f (s \<inter> x) + outer_measure M f (s - x) \<le> (\<Sum>i. f (A i))" .
+  qed
+  moreover
+  have "outer_measure M f s \<le> outer_measure M f (s \<inter> x) + outer_measure M f (s - x)"
+  proof -
+    have "outer_measure M f s = outer_measure M f ((s \<inter> x) \<union> (s - x))"
+      by (metis Un_Diff_Int Un_commute)
+    also have "... \<le> outer_measure M f (s \<inter> x) + outer_measure M f (s - x)"
+      apply (rule subadditiveD)
+      apply (rule ring_of_sets.countably_subadditive_subadditive [OF ring_of_sets_Pow])
+      apply (simp add: positive_def outer_measure_empty[OF posf])
+      apply (rule countably_subadditive_outer_measure)
+      using s by (auto intro!: posf inc)
+    finally show ?thesis .
+  qed
+  ultimately
+  show "outer_measure M f (s \<inter> x) + outer_measure M f (s - x) = outer_measure M f s"
+    by (rule order_antisym)
+qed
+
+lemma measure_down: "measure_space \<Omega> N \<mu> \<Longrightarrow> sigma_algebra \<Omega> M \<Longrightarrow> M \<subseteq> N \<Longrightarrow> measure_space \<Omega> M \<mu>"
+  by (auto simp add: measure_space_def positive_def countably_additive_def subset_eq)
+
+subsection \<open>Caratheodory's theorem\<close>
+
+theorem (in ring_of_sets) caratheodory':
+  assumes posf: "positive M f" and ca: "countably_additive M f"
+  shows "\<exists>\<mu> :: 'a set \<Rightarrow> ennreal. (\<forall>s \<in> M. \<mu> s = f s) \<and> measure_space \<Omega> (sigma_sets \<Omega> M) \<mu>"
+proof -
+  have inc: "increasing M f"
+    by (metis additive_increasing ca countably_additive_additive posf)
+  let ?O = "outer_measure M f"
+  define ls where "ls = lambda_system \<Omega> (Pow \<Omega>) ?O"
+  have mls: "measure_space \<Omega> ls ?O"
+    using sigma_algebra.caratheodory_lemma
+            [OF sigma_algebra_Pow outer_measure_space_outer_measure [OF posf inc]]
+    by (simp add: ls_def)
+  hence sls: "sigma_algebra \<Omega> ls"
+    by (simp add: measure_space_def)
+  have "M \<subseteq> ls"
+    by (simp add: ls_def)
+       (metis ca posf inc countably_additive_additive algebra_subset_lambda_system)
+  hence sgs_sb: "sigma_sets (\<Omega>) (M) \<subseteq> ls"
+    using sigma_algebra.sigma_sets_subset [OF sls, of "M"]
+    by simp
+  have "measure_space \<Omega> (sigma_sets \<Omega> M) ?O"
+    by (rule measure_down [OF mls], rule sigma_algebra_sigma_sets)
+       (simp_all add: sgs_sb space_closed)
+  thus ?thesis using outer_measure_agrees [OF posf ca]
+    by (intro exI[of _ ?O]) auto
+qed
+
+lemma (in ring_of_sets) caratheodory_empty_continuous:
+  assumes f: "positive M f" "additive M f" and fin: "\<And>A. A \<in> M \<Longrightarrow> f A \<noteq> \<infinity>"
+  assumes cont: "\<And>A. range A \<subseteq> M \<Longrightarrow> decseq A \<Longrightarrow> (\<Inter>i. A i) = {} \<Longrightarrow> (\<lambda>i. f (A i)) \<longlonglongrightarrow> 0"
+  shows "\<exists>\<mu> :: 'a set \<Rightarrow> ennreal. (\<forall>s \<in> M. \<mu> s = f s) \<and> measure_space \<Omega> (sigma_sets \<Omega> M) \<mu>"
+proof (intro caratheodory' empty_continuous_imp_countably_additive f)
+  show "\<forall>A\<in>M. f A \<noteq> \<infinity>" using fin by auto
+qed (rule cont)
+
+subsection \<open>Volumes\<close>
+
+definition volume :: "'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> bool" where
+  "volume M f \<longleftrightarrow>
+  (f {} = 0) \<and> (\<forall>a\<in>M. 0 \<le> f a) \<and>
+  (\<forall>C\<subseteq>M. disjoint C \<longrightarrow> finite C \<longrightarrow> \<Union>C \<in> M \<longrightarrow> f (\<Union>C) = (\<Sum>c\<in>C. f c))"
+
+lemma volumeI:
+  assumes "f {} = 0"
+  assumes "\<And>a. a \<in> M \<Longrightarrow> 0 \<le> f a"
+  assumes "\<And>C. C \<subseteq> M \<Longrightarrow> disjoint C \<Longrightarrow> finite C \<Longrightarrow> \<Union>C \<in> M \<Longrightarrow> f (\<Union>C) = (\<Sum>c\<in>C. f c)"
+  shows "volume M f"
+  using assms by (auto simp: volume_def)
+
+lemma volume_positive:
+  "volume M f \<Longrightarrow> a \<in> M \<Longrightarrow> 0 \<le> f a"
+  by (auto simp: volume_def)
+
+lemma volume_empty:
+  "volume M f \<Longrightarrow> f {} = 0"
+  by (auto simp: volume_def)
+
+lemma volume_finite_additive:
+  assumes "volume M f"
+  assumes A: "\<And>i. i \<in> I \<Longrightarrow> A i \<in> M" "disjoint_family_on A I" "finite I" "UNION I A \<in> M"
+  shows "f (UNION I A) = (\<Sum>i\<in>I. f (A i))"
+proof -
+  have "A`I \<subseteq> M" "disjoint (A`I)" "finite (A`I)" "\<Union>(A`I) \<in> M"
+    using A by (auto simp: disjoint_family_on_disjoint_image)
+  with \<open>volume M f\<close> have "f (\<Union>(A`I)) = (\<Sum>a\<in>A`I. f a)"
+    unfolding volume_def by blast
+  also have "\<dots> = (\<Sum>i\<in>I. f (A i))"
+  proof (subst setsum.reindex_nontrivial)
+    fix i j assume "i \<in> I" "j \<in> I" "i \<noteq> j" "A i = A j"
+    with \<open>disjoint_family_on A I\<close> have "A i = {}"
+      by (auto simp: disjoint_family_on_def)
+    then show "f (A i) = 0"
+      using volume_empty[OF \<open>volume M f\<close>] by simp
+  qed (auto intro: \<open>finite I\<close>)
+  finally show "f (UNION I A) = (\<Sum>i\<in>I. f (A i))"
+    by simp
+qed
+
+lemma (in ring_of_sets) volume_additiveI:
+  assumes pos: "\<And>a. a \<in> M \<Longrightarrow> 0 \<le> \<mu> a"
+  assumes [simp]: "\<mu> {} = 0"
+  assumes add: "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a \<inter> b = {} \<Longrightarrow> \<mu> (a \<union> b) = \<mu> a + \<mu> b"
+  shows "volume M \<mu>"
+proof (unfold volume_def, safe)
+  fix C assume "finite C" "C \<subseteq> M" "disjoint C"
+  then show "\<mu> (\<Union>C) = setsum \<mu> C"
+  proof (induct C)
+    case (insert c C)
+    from insert(1,2,4,5) have "\<mu> (\<Union>insert c C) = \<mu> c + \<mu> (\<Union>C)"
+      by (auto intro!: add simp: disjoint_def)
+    with insert show ?case
+      by (simp add: disjoint_def)
+  qed simp
+qed fact+
+
+lemma (in semiring_of_sets) extend_volume:
+  assumes "volume M \<mu>"
+  shows "\<exists>\<mu>'. volume generated_ring \<mu>' \<and> (\<forall>a\<in>M. \<mu>' a = \<mu> a)"
+proof -
+  let ?R = generated_ring
+  have "\<forall>a\<in>?R. \<exists>m. \<exists>C\<subseteq>M. a = \<Union>C \<and> finite C \<and> disjoint C \<and> m = (\<Sum>c\<in>C. \<mu> c)"
+    by (auto simp: generated_ring_def)
+  from bchoice[OF this] guess \<mu>' .. note \<mu>'_spec = this
+
+  { fix C assume C: "C \<subseteq> M" "finite C" "disjoint C"
+    fix D assume D: "D \<subseteq> M" "finite D" "disjoint D"
+    assume "\<Union>C = \<Union>D"
+    have "(\<Sum>d\<in>D. \<mu> d) = (\<Sum>d\<in>D. \<Sum>c\<in>C. \<mu> (c \<inter> d))"
+    proof (intro setsum.cong refl)
+      fix d assume "d \<in> D"
+      have Un_eq_d: "(\<Union>c\<in>C. c \<inter> d) = d"
+        using \<open>d \<in> D\<close> \<open>\<Union>C = \<Union>D\<close> by auto
+      moreover have "\<mu> (\<Union>c\<in>C. c \<inter> d) = (\<Sum>c\<in>C. \<mu> (c \<inter> d))"
+      proof (rule volume_finite_additive)
+        { fix c assume "c \<in> C" then show "c \<inter> d \<in> M"
+            using C D \<open>d \<in> D\<close> by auto }
+        show "(\<Union>a\<in>C. a \<inter> d) \<in> M"
+          unfolding Un_eq_d using \<open>d \<in> D\<close> D by auto
+        show "disjoint_family_on (\<lambda>a. a \<inter> d) C"
+          using \<open>disjoint C\<close> by (auto simp: disjoint_family_on_def disjoint_def)
+      qed fact+
+      ultimately show "\<mu> d = (\<Sum>c\<in>C. \<mu> (c \<inter> d))" by simp
+    qed }
+  note split_sum = this
+
+  { fix C assume C: "C \<subseteq> M" "finite C" "disjoint C"
+    fix D assume D: "D \<subseteq> M" "finite D" "disjoint D"
+    assume "\<Union>C = \<Union>D"
+    with split_sum[OF C D] split_sum[OF D C]
+    have "(\<Sum>d\<in>D. \<mu> d) = (\<Sum>c\<in>C. \<mu> c)"
+      by (simp, subst setsum.commute, simp add: ac_simps) }
+  note sum_eq = this
+
+  { fix C assume C: "C \<subseteq> M" "finite C" "disjoint C"
+    then have "\<Union>C \<in> ?R" by (auto simp: generated_ring_def)
+    with \<mu>'_spec[THEN bspec, of "\<Union>C"]
+    obtain D where
+      D: "D \<subseteq> M" "finite D" "disjoint D" "\<Union>C = \<Union>D" and "\<mu>' (\<Union>C) = (\<Sum>d\<in>D. \<mu> d)"
+      by auto
+    with sum_eq[OF C D] have "\<mu>' (\<Union>C) = (\<Sum>c\<in>C. \<mu> c)" by simp }
+  note \<mu>' = this
+
+  show ?thesis
+  proof (intro exI conjI ring_of_sets.volume_additiveI[OF generating_ring] ballI)
+    fix a assume "a \<in> M" with \<mu>'[of "{a}"] show "\<mu>' a = \<mu> a"
+      by (simp add: disjoint_def)
+  next
+    fix a assume "a \<in> ?R" then guess Ca .. note Ca = this
+    with \<mu>'[of Ca] \<open>volume M \<mu>\<close>[THEN volume_positive]
+    show "0 \<le> \<mu>' a"
+      by (auto intro!: setsum_nonneg)
+  next
+    show "\<mu>' {} = 0" using \<mu>'[of "{}"] by auto
+  next
+    fix a assume "a \<in> ?R" then guess Ca .. note Ca = this
+    fix b assume "b \<in> ?R" then guess Cb .. note Cb = this
+    assume "a \<inter> b = {}"
+    with Ca Cb have "Ca \<inter> Cb \<subseteq> {{}}" by auto
+    then have C_Int_cases: "Ca \<inter> Cb = {{}} \<or> Ca \<inter> Cb = {}" by auto
+
+    from \<open>a \<inter> b = {}\<close> have "\<mu>' (\<Union>(Ca \<union> Cb)) = (\<Sum>c\<in>Ca \<union> Cb. \<mu> c)"
+      using Ca Cb by (intro \<mu>') (auto intro!: disjoint_union)
+    also have "\<dots> = (\<Sum>c\<in>Ca \<union> Cb. \<mu> c) + (\<Sum>c\<in>Ca \<inter> Cb. \<mu> c)"
+      using C_Int_cases volume_empty[OF \<open>volume M \<mu>\<close>] by (elim disjE) simp_all
+    also have "\<dots> = (\<Sum>c\<in>Ca. \<mu> c) + (\<Sum>c\<in>Cb. \<mu> c)"
+      using Ca Cb by (simp add: setsum.union_inter)
+    also have "\<dots> = \<mu>' a + \<mu>' b"
+      using Ca Cb by (simp add: \<mu>')
+    finally show "\<mu>' (a \<union> b) = \<mu>' a + \<mu>' b"
+      using Ca Cb by simp
+  qed
+qed
+
+subsubsection \<open>Caratheodory on semirings\<close>
+
+theorem (in semiring_of_sets) caratheodory:
+  assumes pos: "positive M \<mu>" and ca: "countably_additive M \<mu>"
+  shows "\<exists>\<mu>' :: 'a set \<Rightarrow> ennreal. (\<forall>s \<in> M. \<mu>' s = \<mu> s) \<and> measure_space \<Omega> (sigma_sets \<Omega> M) \<mu>'"
+proof -
+  have "volume M \<mu>"
+  proof (rule volumeI)
+    { fix a assume "a \<in> M" then show "0 \<le> \<mu> a"
+        using pos unfolding positive_def by auto }
+    note p = this
+
+    fix C assume sets_C: "C \<subseteq> M" "\<Union>C \<in> M" and "disjoint C" "finite C"
+    have "\<exists>F'. bij_betw F' {..<card C} C"
+      by (rule finite_same_card_bij[OF _ \<open>finite C\<close>]) auto
+    then guess F' .. note F' = this
+    then have F': "C = F' ` {..< card C}" "inj_on F' {..< card C}"
+      by (auto simp: bij_betw_def)
+    { fix i j assume *: "i < card C" "j < card C" "i \<noteq> j"
+      with F' have "F' i \<in> C" "F' j \<in> C" "F' i \<noteq> F' j"
+        unfolding inj_on_def by auto
+      with \<open>disjoint C\<close>[THEN disjointD]
+      have "F' i \<inter> F' j = {}"
+        by auto }
+    note F'_disj = this
+    define F where "F i = (if i < card C then F' i else {})" for i
+    then have "disjoint_family F"
+      using F'_disj by (auto simp: disjoint_family_on_def)
+    moreover from F' have "(\<Union>i. F i) = \<Union>C"
+      by (auto simp add: F_def split: if_split_asm) blast
+    moreover have sets_F: "\<And>i. F i \<in> M"
+      using F' sets_C by (auto simp: F_def)
+    moreover note sets_C
+    ultimately have "\<mu> (\<Union>C) = (\<Sum>i. \<mu> (F i))"
+      using ca[unfolded countably_additive_def, THEN spec, of F] by auto
+    also have "\<dots> = (\<Sum>i<card C. \<mu> (F' i))"
+    proof -
+      have "(\<lambda>i. if i \<in> {..< card C} then \<mu> (F' i) else 0) sums (\<Sum>i<card C. \<mu> (F' i))"
+        by (rule sums_If_finite_set) auto
+      also have "(\<lambda>i. if i \<in> {..< card C} then \<mu> (F' i) else 0) = (\<lambda>i. \<mu> (F i))"
+        using pos by (auto simp: positive_def F_def)
+      finally show "(\<Sum>i. \<mu> (F i)) = (\<Sum>i<card C. \<mu> (F' i))"
+        by (simp add: sums_iff)
+    qed
+    also have "\<dots> = (\<Sum>c\<in>C. \<mu> c)"
+      using F'(2) by (subst (2) F') (simp add: setsum.reindex)
+    finally show "\<mu> (\<Union>C) = (\<Sum>c\<in>C. \<mu> c)" .
+  next
+    show "\<mu> {} = 0"
+      using \<open>positive M \<mu>\<close> by (rule positiveD1)
+  qed
+  from extend_volume[OF this] obtain \<mu>_r where
+    V: "volume generated_ring \<mu>_r" "\<And>a. a \<in> M \<Longrightarrow> \<mu> a = \<mu>_r a"
+    by auto
+
+  interpret G: ring_of_sets \<Omega> generated_ring
+    by (rule generating_ring)
+
+  have pos: "positive generated_ring \<mu>_r"
+    using V unfolding positive_def by (auto simp: positive_def intro!: volume_positive volume_empty)
+
+  have "countably_additive generated_ring \<mu>_r"
+  proof (rule countably_additiveI)
+    fix A' :: "nat \<Rightarrow> 'a set" assume A': "range A' \<subseteq> generated_ring" "disjoint_family A'"
+      and Un_A: "(\<Union>i. A' i) \<in> generated_ring"
+
+    from generated_ringE[OF Un_A] guess C' . note C' = this
+
+    { fix c assume "c \<in> C'"
+      moreover define A where [abs_def]: "A i = A' i \<inter> c" for i
+      ultimately have A: "range A \<subseteq> generated_ring" "disjoint_family A"
+        and Un_A: "(\<Union>i. A i) \<in> generated_ring"
+        using A' C'
+        by (auto intro!: G.Int G.finite_Union intro: generated_ringI_Basic simp: disjoint_family_on_def)
+      from A C' \<open>c \<in> C'\<close> have UN_eq: "(\<Union>i. A i) = c"
+        by (auto simp: A_def)
+
+      have "\<forall>i::nat. \<exists>f::nat \<Rightarrow> 'a set. \<mu>_r (A i) = (\<Sum>j. \<mu>_r (f j)) \<and> disjoint_family f \<and> \<Union>range f = A i \<and> (\<forall>j. f j \<in> M)"
+        (is "\<forall>i. ?P i")
+      proof
+        fix i
+        from A have Ai: "A i \<in> generated_ring" by auto
+        from generated_ringE[OF this] guess C . note C = this
+
+        have "\<exists>F'. bij_betw F' {..<card C} C"
+          by (rule finite_same_card_bij[OF _ \<open>finite C\<close>]) auto
+        then guess F .. note F = this
+        define f where [abs_def]: "f i = (if i < card C then F i else {})" for i
+        then have f: "bij_betw f {..< card C} C"
+          by (intro bij_betw_cong[THEN iffD1, OF _ F]) auto
+        with C have "\<forall>j. f j \<in> M"
+          by (auto simp: Pi_iff f_def dest!: bij_betw_imp_funcset)
+        moreover
+        from f C have d_f: "disjoint_family_on f {..<card C}"
+          by (intro disjoint_image_disjoint_family_on) (auto simp: bij_betw_def)
+        then have "disjoint_family f"
+          by (auto simp: disjoint_family_on_def f_def)
+        moreover
+        have Ai_eq: "A i = (\<Union>x<card C. f x)"
+          using f C Ai unfolding bij_betw_def by auto
+        then have "\<Union>range f = A i"
+          using f C Ai unfolding bij_betw_def
+            by (auto simp add: f_def cong del: strong_SUP_cong)
+        moreover
+        { have "(\<Sum>j. \<mu>_r (f j)) = (\<Sum>j. if j \<in> {..< card C} then \<mu>_r (f j) else 0)"
+            using volume_empty[OF V(1)] by (auto intro!: arg_cong[where f=suminf] simp: f_def)
+          also have "\<dots> = (\<Sum>j<card C. \<mu>_r (f j))"
+            by (rule sums_If_finite_set[THEN sums_unique, symmetric]) simp
+          also have "\<dots> = \<mu>_r (A i)"
+            using C f[THEN bij_betw_imp_funcset] unfolding Ai_eq
+            by (intro volume_finite_additive[OF V(1) _ d_f, symmetric])
+               (auto simp: Pi_iff Ai_eq intro: generated_ringI_Basic)
+          finally have "\<mu>_r (A i) = (\<Sum>j. \<mu>_r (f j))" .. }
+        ultimately show "?P i"
+          by blast
+      qed
+      from choice[OF this] guess f .. note f = this
+      then have UN_f_eq: "(\<Union>i. case_prod f (prod_decode i)) = (\<Union>i. A i)"
+        unfolding UN_extend_simps surj_prod_decode by (auto simp: set_eq_iff)
+
+      have d: "disjoint_family (\<lambda>i. case_prod f (prod_decode i))"
+        unfolding disjoint_family_on_def
+      proof (intro ballI impI)
+        fix m n :: nat assume "m \<noteq> n"
+        then have neq: "prod_decode m \<noteq> prod_decode n"
+          using inj_prod_decode[of UNIV] by (auto simp: inj_on_def)
+        show "case_prod f (prod_decode m) \<inter> case_prod f (prod_decode n) = {}"
+        proof cases
+          assume "fst (prod_decode m) = fst (prod_decode n)"
+          then show ?thesis
+            using neq f by (fastforce simp: disjoint_family_on_def)
+        next
+          assume neq: "fst (prod_decode m) \<noteq> fst (prod_decode n)"
+          have "case_prod f (prod_decode m) \<subseteq> A (fst (prod_decode m))"
+            "case_prod f (prod_decode n) \<subseteq> A (fst (prod_decode n))"
+            using f[THEN spec, of "fst (prod_decode m)"]
+            using f[THEN spec, of "fst (prod_decode n)"]
+            by (auto simp: set_eq_iff)
+          with f A neq show ?thesis
+            by (fastforce simp: disjoint_family_on_def subset_eq set_eq_iff)
+        qed
+      qed
+      from f have "(\<Sum>n. \<mu>_r (A n)) = (\<Sum>n. \<mu>_r (case_prod f (prod_decode n)))"
+        by (intro suminf_ennreal_2dimen[symmetric] generated_ringI_Basic)
+         (auto split: prod.split)
+      also have "\<dots> = (\<Sum>n. \<mu> (case_prod f (prod_decode n)))"
+        using f V(2) by (auto intro!: arg_cong[where f=suminf] split: prod.split)
+      also have "\<dots> = \<mu> (\<Union>i. case_prod f (prod_decode i))"
+        using f \<open>c \<in> C'\<close> C'
+        by (intro ca[unfolded countably_additive_def, rule_format])
+           (auto split: prod.split simp: UN_f_eq d UN_eq)
+      finally have "(\<Sum>n. \<mu>_r (A' n \<inter> c)) = \<mu> c"
+        using UN_f_eq UN_eq by (simp add: A_def) }
+    note eq = this
+
+    have "(\<Sum>n. \<mu>_r (A' n)) = (\<Sum>n. \<Sum>c\<in>C'. \<mu>_r (A' n \<inter> c))"
+      using C' A'
+      by (subst volume_finite_additive[symmetric, OF V(1)])
+         (auto simp: disjoint_def disjoint_family_on_def
+               intro!: G.Int G.finite_Union arg_cong[where f="\<lambda>X. suminf (\<lambda>i. \<mu>_r (X i))"] ext
+               intro: generated_ringI_Basic)
+    also have "\<dots> = (\<Sum>c\<in>C'. \<Sum>n. \<mu>_r (A' n \<inter> c))"
+      using C' A'
+      by (intro suminf_setsum G.Int G.finite_Union) (auto intro: generated_ringI_Basic)
+    also have "\<dots> = (\<Sum>c\<in>C'. \<mu>_r c)"
+      using eq V C' by (auto intro!: setsum.cong)
+    also have "\<dots> = \<mu>_r (\<Union>C')"
+      using C' Un_A
+      by (subst volume_finite_additive[symmetric, OF V(1)])
+         (auto simp: disjoint_family_on_def disjoint_def
+               intro: generated_ringI_Basic)
+    finally show "(\<Sum>n. \<mu>_r (A' n)) = \<mu>_r (\<Union>i. A' i)"
+      using C' by simp
+  qed
+  from G.caratheodory'[OF \<open>positive generated_ring \<mu>_r\<close> \<open>countably_additive generated_ring \<mu>_r\<close>]
+  guess \<mu>' ..
+  with V show ?thesis
+    unfolding sigma_sets_generated_ring_eq
+    by (intro exI[of _ \<mu>']) (auto intro: generated_ringI_Basic)
+qed
+
+lemma extend_measure_caratheodory:
+  fixes G :: "'i \<Rightarrow> 'a set"
+  assumes M: "M = extend_measure \<Omega> I G \<mu>"
+  assumes "i \<in> I"
+  assumes "semiring_of_sets \<Omega> (G ` I)"
+  assumes empty: "\<And>i. i \<in> I \<Longrightarrow> G i = {} \<Longrightarrow> \<mu> i = 0"
+  assumes inj: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> G i = G j \<Longrightarrow> \<mu> i = \<mu> j"
+  assumes nonneg: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> \<mu> i"
+  assumes add: "\<And>A::nat \<Rightarrow> 'i. \<And>j. A \<in> UNIV \<rightarrow> I \<Longrightarrow> j \<in> I \<Longrightarrow> disjoint_family (G \<circ> A) \<Longrightarrow>
+    (\<Union>i. G (A i)) = G j \<Longrightarrow> (\<Sum>n. \<mu> (A n)) = \<mu> j"
+  shows "emeasure M (G i) = \<mu> i"
+proof -
+  interpret semiring_of_sets \<Omega> "G ` I"
+    by fact
+  have "\<forall>g\<in>G`I. \<exists>i\<in>I. g = G i"
+    by auto
+  then obtain sel where sel: "\<And>g. g \<in> G ` I \<Longrightarrow> sel g \<in> I" "\<And>g. g \<in> G ` I \<Longrightarrow> G (sel g) = g"
+    by metis
+
+  have "\<exists>\<mu>'. (\<forall>s\<in>G ` I. \<mu>' s = \<mu> (sel s)) \<and> measure_space \<Omega> (sigma_sets \<Omega> (G ` I)) \<mu>'"
+  proof (rule caratheodory)
+    show "positive (G ` I) (\<lambda>s. \<mu> (sel s))"
+      by (auto simp: positive_def intro!: empty sel nonneg)
+    show "countably_additive (G ` I) (\<lambda>s. \<mu> (sel s))"
+    proof (rule countably_additiveI)
+      fix A :: "nat \<Rightarrow> 'a set" assume "range A \<subseteq> G ` I" "disjoint_family A" "(\<Union>i. A i) \<in> G ` I"
+      then show "(\<Sum>i. \<mu> (sel (A i))) = \<mu> (sel (\<Union>i. A i))"
+        by (intro add) (auto simp: sel image_subset_iff_funcset comp_def Pi_iff intro!: sel)
+    qed
+  qed
+  then obtain \<mu>' where \<mu>': "\<forall>s\<in>G ` I. \<mu>' s = \<mu> (sel s)" "measure_space \<Omega> (sigma_sets \<Omega> (G ` I)) \<mu>'"
+    by metis
+
+  show ?thesis
+  proof (rule emeasure_extend_measure[OF M])
+    { fix i assume "i \<in> I" then show "\<mu>' (G i) = \<mu> i"
+      using \<mu>' by (auto intro!: inj sel) }
+    show "G ` I \<subseteq> Pow \<Omega>"
+      by fact
+    then show "positive (sets M) \<mu>'" "countably_additive (sets M) \<mu>'"
+      using \<mu>' by (simp_all add: M sets_extend_measure measure_space_def)
+  qed fact
+qed
+
+lemma extend_measure_caratheodory_pair:
+  fixes G :: "'i \<Rightarrow> 'j \<Rightarrow> 'a set"
+  assumes M: "M = extend_measure \<Omega> {(a, b). P a b} (\<lambda>(a, b). G a b) (\<lambda>(a, b). \<mu> a b)"
+  assumes "P i j"
+  assumes semiring: "semiring_of_sets \<Omega> {G a b | a b. P a b}"
+  assumes empty: "\<And>i j. P i j \<Longrightarrow> G i j = {} \<Longrightarrow> \<mu> i j = 0"
+  assumes inj: "\<And>i j k l. P i j \<Longrightarrow> P k l \<Longrightarrow> G i j = G k l \<Longrightarrow> \<mu> i j = \<mu> k l"
+  assumes nonneg: "\<And>i j. P i j \<Longrightarrow> 0 \<le> \<mu> i j"
+  assumes add: "\<And>A::nat \<Rightarrow> 'i. \<And>B::nat \<Rightarrow> 'j. \<And>j k.
+    (\<And>n. P (A n) (B n)) \<Longrightarrow> P j k \<Longrightarrow> disjoint_family (\<lambda>n. G (A n) (B n)) \<Longrightarrow>
+    (\<Union>i. G (A i) (B i)) = G j k \<Longrightarrow> (\<Sum>n. \<mu> (A n) (B n)) = \<mu> j k"
+  shows "emeasure M (G i j) = \<mu> i j"
+proof -
+  have "emeasure M ((\<lambda>(a, b). G a b) (i, j)) = (\<lambda>(a, b). \<mu> a b) (i, j)"
+  proof (rule extend_measure_caratheodory[OF M])
+    show "semiring_of_sets \<Omega> ((\<lambda>(a, b). G a b) ` {(a, b). P a b})"
+      using semiring by (simp add: image_def conj_commute)
+  next
+    fix A :: "nat \<Rightarrow> ('i \<times> 'j)" and j assume "A \<in> UNIV \<rightarrow> {(a, b). P a b}" "j \<in> {(a, b). P a b}"
+      "disjoint_family ((\<lambda>(a, b). G a b) \<circ> A)"
+      "(\<Union>i. case A i of (a, b) \<Rightarrow> G a b) = (case j of (a, b) \<Rightarrow> G a b)"
+    then show "(\<Sum>n. case A n of (a, b) \<Rightarrow> \<mu> a b) = (case j of (a, b) \<Rightarrow> \<mu> a b)"
+      using add[of "\<lambda>i. fst (A i)" "\<lambda>i. snd (A i)" "fst j" "snd j"]
+      by (simp add: split_beta' comp_def Pi_iff)
+  qed (auto split: prod.splits intro: assms)
+  then show ?thesis by simp
+qed
+
+end