src/HOL/Multivariate_Analysis/Sigma_Algebra.thy
changeset 63626 44ce6b524ff3
parent 63333 158ab2239496
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Multivariate_Analysis/Sigma_Algebra.thy	Fri Aug 05 18:34:57 2016 +0200
@@ -0,0 +1,2262 @@
+(*  Title:      HOL/Probability/Sigma_Algebra.thy
+    Author:     Stefan Richter, Markus Wenzel, TU München
+    Author:     Johannes Hölzl, TU München
+    Plus material from the Hurd/Coble measure theory development,
+    translated by Lawrence Paulson.
+*)
+
+section \<open>Describing measurable sets\<close>
+
+theory Sigma_Algebra
+imports
+  Complex_Main
+  "~~/src/HOL/Library/Countable_Set"
+  "~~/src/HOL/Library/FuncSet"
+  "~~/src/HOL/Library/Indicator_Function"
+  "~~/src/HOL/Library/Extended_Nonnegative_Real"
+  "~~/src/HOL/Library/Disjoint_Sets"
+begin
+
+text \<open>Sigma algebras are an elementary concept in measure
+  theory. To measure --- that is to integrate --- functions, we first have
+  to measure sets. Unfortunately, when dealing with a large universe,
+  it is often not possible to consistently assign a measure to every
+  subset. Therefore it is necessary to define the set of measurable
+  subsets of the universe. A sigma algebra is such a set that has
+  three very natural and desirable properties.\<close>
+
+subsection \<open>Families of sets\<close>
+
+locale subset_class =
+  fixes \<Omega> :: "'a set" and M :: "'a set set"
+  assumes space_closed: "M \<subseteq> Pow \<Omega>"
+
+lemma (in subset_class) sets_into_space: "x \<in> M \<Longrightarrow> x \<subseteq> \<Omega>"
+  by (metis PowD contra_subsetD space_closed)
+
+subsubsection \<open>Semiring of sets\<close>
+
+locale semiring_of_sets = subset_class +
+  assumes empty_sets[iff]: "{} \<in> M"
+  assumes Int[intro]: "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a \<inter> b \<in> M"
+  assumes Diff_cover:
+    "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> \<exists>C\<subseteq>M. finite C \<and> disjoint C \<and> a - b = \<Union>C"
+
+lemma (in semiring_of_sets) finite_INT[intro]:
+  assumes "finite I" "I \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> A i \<in> M"
+  shows "(\<Inter>i\<in>I. A i) \<in> M"
+  using assms by (induct rule: finite_ne_induct) auto
+
+lemma (in semiring_of_sets) Int_space_eq1 [simp]: "x \<in> M \<Longrightarrow> \<Omega> \<inter> x = x"
+  by (metis Int_absorb1 sets_into_space)
+
+lemma (in semiring_of_sets) Int_space_eq2 [simp]: "x \<in> M \<Longrightarrow> x \<inter> \<Omega> = x"
+  by (metis Int_absorb2 sets_into_space)
+
+lemma (in semiring_of_sets) sets_Collect_conj:
+  assumes "{x\<in>\<Omega>. P x} \<in> M" "{x\<in>\<Omega>. Q x} \<in> M"
+  shows "{x\<in>\<Omega>. Q x \<and> P x} \<in> M"
+proof -
+  have "{x\<in>\<Omega>. Q x \<and> P x} = {x\<in>\<Omega>. Q x} \<inter> {x\<in>\<Omega>. P x}"
+    by auto
+  with assms show ?thesis by auto
+qed
+
+lemma (in semiring_of_sets) sets_Collect_finite_All':
+  assumes "\<And>i. i \<in> S \<Longrightarrow> {x\<in>\<Omega>. P i x} \<in> M" "finite S" "S \<noteq> {}"
+  shows "{x\<in>\<Omega>. \<forall>i\<in>S. P i x} \<in> M"
+proof -
+  have "{x\<in>\<Omega>. \<forall>i\<in>S. P i x} = (\<Inter>i\<in>S. {x\<in>\<Omega>. P i x})"
+    using \<open>S \<noteq> {}\<close> by auto
+  with assms show ?thesis by auto
+qed
+
+locale ring_of_sets = semiring_of_sets +
+  assumes Un [intro]: "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a \<union> b \<in> M"
+
+lemma (in ring_of_sets) finite_Union [intro]:
+  "finite X \<Longrightarrow> X \<subseteq> M \<Longrightarrow> \<Union>X \<in> M"
+  by (induct set: finite) (auto simp add: Un)
+
+lemma (in ring_of_sets) finite_UN[intro]:
+  assumes "finite I" and "\<And>i. i \<in> I \<Longrightarrow> A i \<in> M"
+  shows "(\<Union>i\<in>I. A i) \<in> M"
+  using assms by induct auto
+
+lemma (in ring_of_sets) Diff [intro]:
+  assumes "a \<in> M" "b \<in> M" shows "a - b \<in> M"
+  using Diff_cover[OF assms] by auto
+
+lemma ring_of_setsI:
+  assumes space_closed: "M \<subseteq> Pow \<Omega>"
+  assumes empty_sets[iff]: "{} \<in> M"
+  assumes Un[intro]: "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a \<union> b \<in> M"
+  assumes Diff[intro]: "\<And>a b. a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a - b \<in> M"
+  shows "ring_of_sets \<Omega> M"
+proof
+  fix a b assume ab: "a \<in> M" "b \<in> M"
+  from ab show "\<exists>C\<subseteq>M. finite C \<and> disjoint C \<and> a - b = \<Union>C"
+    by (intro exI[of _ "{a - b}"]) (auto simp: disjoint_def)
+  have "a \<inter> b = a - (a - b)" by auto
+  also have "\<dots> \<in> M" using ab by auto
+  finally show "a \<inter> b \<in> M" .
+qed fact+
+
+lemma ring_of_sets_iff: "ring_of_sets \<Omega> M \<longleftrightarrow> M \<subseteq> Pow \<Omega> \<and> {} \<in> M \<and> (\<forall>a\<in>M. \<forall>b\<in>M. a \<union> b \<in> M) \<and> (\<forall>a\<in>M. \<forall>b\<in>M. a - b \<in> M)"
+proof
+  assume "ring_of_sets \<Omega> M"
+  then interpret ring_of_sets \<Omega> M .
+  show "M \<subseteq> Pow \<Omega> \<and> {} \<in> M \<and> (\<forall>a\<in>M. \<forall>b\<in>M. a \<union> b \<in> M) \<and> (\<forall>a\<in>M. \<forall>b\<in>M. a - b \<in> M)"
+    using space_closed by auto
+qed (auto intro!: ring_of_setsI)
+
+lemma (in ring_of_sets) insert_in_sets:
+  assumes "{x} \<in> M" "A \<in> M" shows "insert x A \<in> M"
+proof -
+  have "{x} \<union> A \<in> M" using assms by (rule Un)
+  thus ?thesis by auto
+qed
+
+lemma (in ring_of_sets) sets_Collect_disj:
+  assumes "{x\<in>\<Omega>. P x} \<in> M" "{x\<in>\<Omega>. Q x} \<in> M"
+  shows "{x\<in>\<Omega>. Q x \<or> P x} \<in> M"
+proof -
+  have "{x\<in>\<Omega>. Q x \<or> P x} = {x\<in>\<Omega>. Q x} \<union> {x\<in>\<Omega>. P x}"
+    by auto
+  with assms show ?thesis by auto
+qed
+
+lemma (in ring_of_sets) sets_Collect_finite_Ex:
+  assumes "\<And>i. i \<in> S \<Longrightarrow> {x\<in>\<Omega>. P i x} \<in> M" "finite S"
+  shows "{x\<in>\<Omega>. \<exists>i\<in>S. P i x} \<in> M"
+proof -
+  have "{x\<in>\<Omega>. \<exists>i\<in>S. P i x} = (\<Union>i\<in>S. {x\<in>\<Omega>. P i x})"
+    by auto
+  with assms show ?thesis by auto
+qed
+
+locale algebra = ring_of_sets +
+  assumes top [iff]: "\<Omega> \<in> M"
+
+lemma (in algebra) compl_sets [intro]:
+  "a \<in> M \<Longrightarrow> \<Omega> - a \<in> M"
+  by auto
+
+lemma algebra_iff_Un:
+  "algebra \<Omega> M \<longleftrightarrow>
+    M \<subseteq> Pow \<Omega> \<and>
+    {} \<in> M \<and>
+    (\<forall>a \<in> M. \<Omega> - a \<in> M) \<and>
+    (\<forall>a \<in> M. \<forall> b \<in> M. a \<union> b \<in> M)" (is "_ \<longleftrightarrow> ?Un")
+proof
+  assume "algebra \<Omega> M"
+  then interpret algebra \<Omega> M .
+  show ?Un using sets_into_space by auto
+next
+  assume ?Un
+  then have "\<Omega> \<in> M" by auto
+  interpret ring_of_sets \<Omega> M
+  proof (rule ring_of_setsI)
+    show \<Omega>: "M \<subseteq> Pow \<Omega>" "{} \<in> M"
+      using \<open>?Un\<close> by auto
+    fix a b assume a: "a \<in> M" and b: "b \<in> M"
+    then show "a \<union> b \<in> M" using \<open>?Un\<close> by auto
+    have "a - b = \<Omega> - ((\<Omega> - a) \<union> b)"
+      using \<Omega> a b by auto
+    then show "a - b \<in> M"
+      using a b  \<open>?Un\<close> by auto
+  qed
+  show "algebra \<Omega> M" proof qed fact
+qed
+
+lemma algebra_iff_Int:
+     "algebra \<Omega> M \<longleftrightarrow>
+       M \<subseteq> Pow \<Omega> & {} \<in> M &
+       (\<forall>a \<in> M. \<Omega> - a \<in> M) &
+       (\<forall>a \<in> M. \<forall> b \<in> M. a \<inter> b \<in> M)" (is "_ \<longleftrightarrow> ?Int")
+proof
+  assume "algebra \<Omega> M"
+  then interpret algebra \<Omega> M .
+  show ?Int using sets_into_space by auto
+next
+  assume ?Int
+  show "algebra \<Omega> M"
+  proof (unfold algebra_iff_Un, intro conjI ballI)
+    show \<Omega>: "M \<subseteq> Pow \<Omega>" "{} \<in> M"
+      using \<open>?Int\<close> by auto
+    from \<open>?Int\<close> show "\<And>a. a \<in> M \<Longrightarrow> \<Omega> - a \<in> M" by auto
+    fix a b assume M: "a \<in> M" "b \<in> M"
+    hence "a \<union> b = \<Omega> - ((\<Omega> - a) \<inter> (\<Omega> - b))"
+      using \<Omega> by blast
+    also have "... \<in> M"
+      using M \<open>?Int\<close> by auto
+    finally show "a \<union> b \<in> M" .
+  qed
+qed
+
+lemma (in algebra) sets_Collect_neg:
+  assumes "{x\<in>\<Omega>. P x} \<in> M"
+  shows "{x\<in>\<Omega>. \<not> P x} \<in> M"
+proof -
+  have "{x\<in>\<Omega>. \<not> P x} = \<Omega> - {x\<in>\<Omega>. P x}" by auto
+  with assms show ?thesis by auto
+qed
+
+lemma (in algebra) sets_Collect_imp:
+  "{x\<in>\<Omega>. P x} \<in> M \<Longrightarrow> {x\<in>\<Omega>. Q x} \<in> M \<Longrightarrow> {x\<in>\<Omega>. Q x \<longrightarrow> P x} \<in> M"
+  unfolding imp_conv_disj by (intro sets_Collect_disj sets_Collect_neg)
+
+lemma (in algebra) sets_Collect_const:
+  "{x\<in>\<Omega>. P} \<in> M"
+  by (cases P) auto
+
+lemma algebra_single_set:
+  "X \<subseteq> S \<Longrightarrow> algebra S { {}, X, S - X, S }"
+  by (auto simp: algebra_iff_Int)
+
+subsubsection \<open>Restricted algebras\<close>
+
+abbreviation (in algebra)
+  "restricted_space A \<equiv> (op \<inter> A) ` M"
+
+lemma (in algebra) restricted_algebra:
+  assumes "A \<in> M" shows "algebra A (restricted_space A)"
+  using assms by (auto simp: algebra_iff_Int)
+
+subsubsection \<open>Sigma Algebras\<close>
+
+locale sigma_algebra = algebra +
+  assumes countable_nat_UN [intro]: "\<And>A. range A \<subseteq> M \<Longrightarrow> (\<Union>i::nat. A i) \<in> M"
+
+lemma (in algebra) is_sigma_algebra:
+  assumes "finite M"
+  shows "sigma_algebra \<Omega> M"
+proof
+  fix A :: "nat \<Rightarrow> 'a set" assume "range A \<subseteq> M"
+  then have "(\<Union>i. A i) = (\<Union>s\<in>M \<inter> range A. s)"
+    by auto
+  also have "(\<Union>s\<in>M \<inter> range A. s) \<in> M"
+    using \<open>finite M\<close> by auto
+  finally show "(\<Union>i. A i) \<in> M" .
+qed
+
+lemma countable_UN_eq:
+  fixes A :: "'i::countable \<Rightarrow> 'a set"
+  shows "(range A \<subseteq> M \<longrightarrow> (\<Union>i. A i) \<in> M) \<longleftrightarrow>
+    (range (A \<circ> from_nat) \<subseteq> M \<longrightarrow> (\<Union>i. (A \<circ> from_nat) i) \<in> M)"
+proof -
+  let ?A' = "A \<circ> from_nat"
+  have *: "(\<Union>i. ?A' i) = (\<Union>i. A i)" (is "?l = ?r")
+  proof safe
+    fix x i assume "x \<in> A i" thus "x \<in> ?l"
+      by (auto intro!: exI[of _ "to_nat i"])
+  next
+    fix x i assume "x \<in> ?A' i" thus "x \<in> ?r"
+      by (auto intro!: exI[of _ "from_nat i"])
+  qed
+  have **: "range ?A' = range A"
+    using surj_from_nat
+    by (auto simp: image_comp [symmetric] intro!: imageI)
+  show ?thesis unfolding * ** ..
+qed
+
+lemma (in sigma_algebra) countable_Union [intro]:
+  assumes "countable X" "X \<subseteq> M" shows "\<Union>X \<in> M"
+proof cases
+  assume "X \<noteq> {}"
+  hence "\<Union>X = (\<Union>n. from_nat_into X n)"
+    using assms by (auto intro: from_nat_into) (metis from_nat_into_surj)
+  also have "\<dots> \<in> M" using assms
+    by (auto intro!: countable_nat_UN) (metis \<open>X \<noteq> {}\<close> from_nat_into set_mp)
+  finally show ?thesis .
+qed simp
+
+lemma (in sigma_algebra) countable_UN[intro]:
+  fixes A :: "'i::countable \<Rightarrow> 'a set"
+  assumes "A`X \<subseteq> M"
+  shows  "(\<Union>x\<in>X. A x) \<in> M"
+proof -
+  let ?A = "\<lambda>i. if i \<in> X then A i else {}"
+  from assms have "range ?A \<subseteq> M" by auto
+  with countable_nat_UN[of "?A \<circ> from_nat"] countable_UN_eq[of ?A M]
+  have "(\<Union>x. ?A x) \<in> M" by auto
+  moreover have "(\<Union>x. ?A x) = (\<Union>x\<in>X. A x)" by (auto split: if_split_asm)
+  ultimately show ?thesis by simp
+qed
+
+lemma (in sigma_algebra) countable_UN':
+  fixes A :: "'i \<Rightarrow> 'a set"
+  assumes X: "countable X"
+  assumes A: "A`X \<subseteq> M"
+  shows  "(\<Union>x\<in>X. A x) \<in> M"
+proof -
+  have "(\<Union>x\<in>X. A x) = (\<Union>i\<in>to_nat_on X ` X. A (from_nat_into X i))"
+    using X by auto
+  also have "\<dots> \<in> M"
+    using A X
+    by (intro countable_UN) auto
+  finally show ?thesis .
+qed
+
+lemma (in sigma_algebra) countable_UN'':
+  "\<lbrakk> countable X; \<And>x y. x \<in> X \<Longrightarrow> A x \<in> M \<rbrakk> \<Longrightarrow> (\<Union>x\<in>X. A x) \<in> M"
+by(erule countable_UN')(auto)
+
+lemma (in sigma_algebra) countable_INT [intro]:
+  fixes A :: "'i::countable \<Rightarrow> 'a set"
+  assumes A: "A`X \<subseteq> M" "X \<noteq> {}"
+  shows "(\<Inter>i\<in>X. A i) \<in> M"
+proof -
+  from A have "\<forall>i\<in>X. A i \<in> M" by fast
+  hence "\<Omega> - (\<Union>i\<in>X. \<Omega> - A i) \<in> M" by blast
+  moreover
+  have "(\<Inter>i\<in>X. A i) = \<Omega> - (\<Union>i\<in>X. \<Omega> - A i)" using space_closed A
+    by blast
+  ultimately show ?thesis by metis
+qed
+
+lemma (in sigma_algebra) countable_INT':
+  fixes A :: "'i \<Rightarrow> 'a set"
+  assumes X: "countable X" "X \<noteq> {}"
+  assumes A: "A`X \<subseteq> M"
+  shows  "(\<Inter>x\<in>X. A x) \<in> M"
+proof -
+  have "(\<Inter>x\<in>X. A x) = (\<Inter>i\<in>to_nat_on X ` X. A (from_nat_into X i))"
+    using X by auto
+  also have "\<dots> \<in> M"
+    using A X
+    by (intro countable_INT) auto
+  finally show ?thesis .
+qed
+
+lemma (in sigma_algebra) countable_INT'':
+  "UNIV \<in> M \<Longrightarrow> countable I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> F i \<in> M) \<Longrightarrow> (\<Inter>i\<in>I. F i) \<in> M"
+  by (cases "I = {}") (auto intro: countable_INT')
+
+lemma (in sigma_algebra) countable:
+  assumes "\<And>a. a \<in> A \<Longrightarrow> {a} \<in> M" "countable A"
+  shows "A \<in> M"
+proof -
+  have "(\<Union>a\<in>A. {a}) \<in> M"
+    using assms by (intro countable_UN') auto
+  also have "(\<Union>a\<in>A. {a}) = A" by auto
+  finally show ?thesis by auto
+qed
+
+lemma ring_of_sets_Pow: "ring_of_sets sp (Pow sp)"
+  by (auto simp: ring_of_sets_iff)
+
+lemma algebra_Pow: "algebra sp (Pow sp)"
+  by (auto simp: algebra_iff_Un)
+
+lemma sigma_algebra_iff:
+  "sigma_algebra \<Omega> M \<longleftrightarrow>
+    algebra \<Omega> M \<and> (\<forall>A. range A \<subseteq> M \<longrightarrow> (\<Union>i::nat. A i) \<in> M)"
+  by (simp add: sigma_algebra_def sigma_algebra_axioms_def)
+
+lemma sigma_algebra_Pow: "sigma_algebra sp (Pow sp)"
+  by (auto simp: sigma_algebra_iff algebra_iff_Int)
+
+lemma (in sigma_algebra) sets_Collect_countable_All:
+  assumes "\<And>i. {x\<in>\<Omega>. P i x} \<in> M"
+  shows "{x\<in>\<Omega>. \<forall>i::'i::countable. P i x} \<in> M"
+proof -
+  have "{x\<in>\<Omega>. \<forall>i::'i::countable. P i x} = (\<Inter>i. {x\<in>\<Omega>. P i x})" by auto
+  with assms show ?thesis by auto
+qed
+
+lemma (in sigma_algebra) sets_Collect_countable_Ex:
+  assumes "\<And>i. {x\<in>\<Omega>. P i x} \<in> M"
+  shows "{x\<in>\<Omega>. \<exists>i::'i::countable. P i x} \<in> M"
+proof -
+  have "{x\<in>\<Omega>. \<exists>i::'i::countable. P i x} = (\<Union>i. {x\<in>\<Omega>. P i x})" by auto
+  with assms show ?thesis by auto
+qed
+
+lemma (in sigma_algebra) sets_Collect_countable_Ex':
+  assumes "\<And>i. i \<in> I \<Longrightarrow> {x\<in>\<Omega>. P i x} \<in> M"
+  assumes "countable I"
+  shows "{x\<in>\<Omega>. \<exists>i\<in>I. P i x} \<in> M"
+proof -
+  have "{x\<in>\<Omega>. \<exists>i\<in>I. P i x} = (\<Union>i\<in>I. {x\<in>\<Omega>. P i x})" by auto
+  with assms show ?thesis
+    by (auto intro!: countable_UN')
+qed
+
+lemma (in sigma_algebra) sets_Collect_countable_All':
+  assumes "\<And>i. i \<in> I \<Longrightarrow> {x\<in>\<Omega>. P i x} \<in> M"
+  assumes "countable I"
+  shows "{x\<in>\<Omega>. \<forall>i\<in>I. P i x} \<in> M"
+proof -
+  have "{x\<in>\<Omega>. \<forall>i\<in>I. P i x} = (\<Inter>i\<in>I. {x\<in>\<Omega>. P i x}) \<inter> \<Omega>" by auto
+  with assms show ?thesis
+    by (cases "I = {}") (auto intro!: countable_INT')
+qed
+
+lemma (in sigma_algebra) sets_Collect_countable_Ex1':
+  assumes "\<And>i. i \<in> I \<Longrightarrow> {x\<in>\<Omega>. P i x} \<in> M"
+  assumes "countable I"
+  shows "{x\<in>\<Omega>. \<exists>!i\<in>I. P i x} \<in> M"
+proof -
+  have "{x\<in>\<Omega>. \<exists>!i\<in>I. P i x} = {x\<in>\<Omega>. \<exists>i\<in>I. P i x \<and> (\<forall>j\<in>I. P j x \<longrightarrow> i = j)}"
+    by auto
+  with assms show ?thesis
+    by (auto intro!: sets_Collect_countable_All' sets_Collect_countable_Ex' sets_Collect_conj sets_Collect_imp sets_Collect_const)
+qed
+
+lemmas (in sigma_algebra) sets_Collect =
+  sets_Collect_imp sets_Collect_disj sets_Collect_conj sets_Collect_neg sets_Collect_const
+  sets_Collect_countable_All sets_Collect_countable_Ex sets_Collect_countable_All
+
+lemma (in sigma_algebra) sets_Collect_countable_Ball:
+  assumes "\<And>i. {x\<in>\<Omega>. P i x} \<in> M"
+  shows "{x\<in>\<Omega>. \<forall>i::'i::countable\<in>X. P i x} \<in> M"
+  unfolding Ball_def by (intro sets_Collect assms)
+
+lemma (in sigma_algebra) sets_Collect_countable_Bex:
+  assumes "\<And>i. {x\<in>\<Omega>. P i x} \<in> M"
+  shows "{x\<in>\<Omega>. \<exists>i::'i::countable\<in>X. P i x} \<in> M"
+  unfolding Bex_def by (intro sets_Collect assms)
+
+lemma sigma_algebra_single_set:
+  assumes "X \<subseteq> S"
+  shows "sigma_algebra S { {}, X, S - X, S }"
+  using algebra.is_sigma_algebra[OF algebra_single_set[OF \<open>X \<subseteq> S\<close>]] by simp
+
+subsubsection \<open>Binary Unions\<close>
+
+definition binary :: "'a \<Rightarrow> 'a \<Rightarrow> nat \<Rightarrow> 'a"
+  where "binary a b =  (\<lambda>x. b)(0 := a)"
+
+lemma range_binary_eq: "range(binary a b) = {a,b}"
+  by (auto simp add: binary_def)
+
+lemma Un_range_binary: "a \<union> b = (\<Union>i::nat. binary a b i)"
+  by (simp add: range_binary_eq cong del: strong_SUP_cong)
+
+lemma Int_range_binary: "a \<inter> b = (\<Inter>i::nat. binary a b i)"
+  by (simp add: range_binary_eq cong del: strong_INF_cong)
+
+lemma sigma_algebra_iff2:
+     "sigma_algebra \<Omega> M \<longleftrightarrow>
+       M \<subseteq> Pow \<Omega> \<and>
+       {} \<in> M \<and> (\<forall>s \<in> M. \<Omega> - s \<in> M) \<and>
+       (\<forall>A. range A \<subseteq> M \<longrightarrow> (\<Union>i::nat. A i) \<in> M)"
+  by (auto simp add: range_binary_eq sigma_algebra_def sigma_algebra_axioms_def
+         algebra_iff_Un Un_range_binary)
+
+subsubsection \<open>Initial Sigma Algebra\<close>
+
+text \<open>Sigma algebras can naturally be created as the closure of any set of
+  M with regard to the properties just postulated.\<close>
+
+inductive_set sigma_sets :: "'a set \<Rightarrow> 'a set set \<Rightarrow> 'a set set"
+  for sp :: "'a set" and A :: "'a set set"
+  where
+    Basic[intro, simp]: "a \<in> A \<Longrightarrow> a \<in> sigma_sets sp A"
+  | Empty: "{} \<in> sigma_sets sp A"
+  | Compl: "a \<in> sigma_sets sp A \<Longrightarrow> sp - a \<in> sigma_sets sp A"
+  | Union: "(\<And>i::nat. a i \<in> sigma_sets sp A) \<Longrightarrow> (\<Union>i. a i) \<in> sigma_sets sp A"
+
+lemma (in sigma_algebra) sigma_sets_subset:
+  assumes a: "a \<subseteq> M"
+  shows "sigma_sets \<Omega> a \<subseteq> M"
+proof
+  fix x
+  assume "x \<in> sigma_sets \<Omega> a"
+  from this show "x \<in> M"
+    by (induct rule: sigma_sets.induct, auto) (metis a subsetD)
+qed
+
+lemma sigma_sets_into_sp: "A \<subseteq> Pow sp \<Longrightarrow> x \<in> sigma_sets sp A \<Longrightarrow> x \<subseteq> sp"
+  by (erule sigma_sets.induct, auto)
+
+lemma sigma_algebra_sigma_sets:
+     "a \<subseteq> Pow \<Omega> \<Longrightarrow> sigma_algebra \<Omega> (sigma_sets \<Omega> a)"
+  by (auto simp add: sigma_algebra_iff2 dest: sigma_sets_into_sp
+           intro!: sigma_sets.Union sigma_sets.Empty sigma_sets.Compl)
+
+lemma sigma_sets_least_sigma_algebra:
+  assumes "A \<subseteq> Pow S"
+  shows "sigma_sets S A = \<Inter>{B. A \<subseteq> B \<and> sigma_algebra S B}"
+proof safe
+  fix B X assume "A \<subseteq> B" and sa: "sigma_algebra S B"
+    and X: "X \<in> sigma_sets S A"
+  from sigma_algebra.sigma_sets_subset[OF sa, simplified, OF \<open>A \<subseteq> B\<close>] X
+  show "X \<in> B" by auto
+next
+  fix X assume "X \<in> \<Inter>{B. A \<subseteq> B \<and> sigma_algebra S B}"
+  then have [intro!]: "\<And>B. A \<subseteq> B \<Longrightarrow> sigma_algebra S B \<Longrightarrow> X \<in> B"
+     by simp
+  have "A \<subseteq> sigma_sets S A" using assms by auto
+  moreover have "sigma_algebra S (sigma_sets S A)"
+    using assms by (intro sigma_algebra_sigma_sets[of A]) auto
+  ultimately show "X \<in> sigma_sets S A" by auto
+qed
+
+lemma sigma_sets_top: "sp \<in> sigma_sets sp A"
+  by (metis Diff_empty sigma_sets.Compl sigma_sets.Empty)
+
+lemma sigma_sets_Un:
+  "a \<in> sigma_sets sp A \<Longrightarrow> b \<in> sigma_sets sp A \<Longrightarrow> a \<union> b \<in> sigma_sets sp A"
+apply (simp add: Un_range_binary range_binary_eq)
+apply (rule Union, simp add: binary_def)
+done
+
+lemma sigma_sets_Inter:
+  assumes Asb: "A \<subseteq> Pow sp"
+  shows "(\<And>i::nat. a i \<in> sigma_sets sp A) \<Longrightarrow> (\<Inter>i. a i) \<in> sigma_sets sp A"
+proof -
+  assume ai: "\<And>i::nat. a i \<in> sigma_sets sp A"
+  hence "\<And>i::nat. sp-(a i) \<in> sigma_sets sp A"
+    by (rule sigma_sets.Compl)
+  hence "(\<Union>i. sp-(a i)) \<in> sigma_sets sp A"
+    by (rule sigma_sets.Union)
+  hence "sp-(\<Union>i. sp-(a i)) \<in> sigma_sets sp A"
+    by (rule sigma_sets.Compl)
+  also have "sp-(\<Union>i. sp-(a i)) = sp Int (\<Inter>i. a i)"
+    by auto
+  also have "... = (\<Inter>i. a i)" using ai
+    by (blast dest: sigma_sets_into_sp [OF Asb])
+  finally show ?thesis .
+qed
+
+lemma sigma_sets_INTER:
+  assumes Asb: "A \<subseteq> Pow sp"
+      and ai: "\<And>i::nat. i \<in> S \<Longrightarrow> a i \<in> sigma_sets sp A" and non: "S \<noteq> {}"
+  shows "(\<Inter>i\<in>S. a i) \<in> sigma_sets sp A"
+proof -
+  from ai have "\<And>i. (if i\<in>S then a i else sp) \<in> sigma_sets sp A"
+    by (simp add: sigma_sets.intros(2-) sigma_sets_top)
+  hence "(\<Inter>i. (if i\<in>S then a i else sp)) \<in> sigma_sets sp A"
+    by (rule sigma_sets_Inter [OF Asb])
+  also have "(\<Inter>i. (if i\<in>S then a i else sp)) = (\<Inter>i\<in>S. a i)"
+    by auto (metis ai non sigma_sets_into_sp subset_empty subset_iff Asb)+
+  finally show ?thesis .
+qed
+
+lemma sigma_sets_UNION:
+  "countable B \<Longrightarrow> (\<And>b. b \<in> B \<Longrightarrow> b \<in> sigma_sets X A) \<Longrightarrow> (\<Union>B) \<in> sigma_sets X A"
+  apply (cases "B = {}")
+  apply (simp add: sigma_sets.Empty)
+  using from_nat_into [of B] range_from_nat_into [of B] sigma_sets.Union [of "from_nat_into B" X A]
+  apply simp
+  apply auto
+  apply (metis Sup_bot_conv(1) Union_empty \<open>\<lbrakk>B \<noteq> {}; countable B\<rbrakk> \<Longrightarrow> range (from_nat_into B) = B\<close>)
+  done
+
+lemma (in sigma_algebra) sigma_sets_eq:
+     "sigma_sets \<Omega> M = M"
+proof
+  show "M \<subseteq> sigma_sets \<Omega> M"
+    by (metis Set.subsetI sigma_sets.Basic)
+  next
+  show "sigma_sets \<Omega> M \<subseteq> M"
+    by (metis sigma_sets_subset subset_refl)
+qed
+
+lemma sigma_sets_eqI:
+  assumes A: "\<And>a. a \<in> A \<Longrightarrow> a \<in> sigma_sets M B"
+  assumes B: "\<And>b. b \<in> B \<Longrightarrow> b \<in> sigma_sets M A"
+  shows "sigma_sets M A = sigma_sets M B"
+proof (intro set_eqI iffI)
+  fix a assume "a \<in> sigma_sets M A"
+  from this A show "a \<in> sigma_sets M B"
+    by induct (auto intro!: sigma_sets.intros(2-) del: sigma_sets.Basic)
+next
+  fix b assume "b \<in> sigma_sets M B"
+  from this B show "b \<in> sigma_sets M A"
+    by induct (auto intro!: sigma_sets.intros(2-) del: sigma_sets.Basic)
+qed
+
+lemma sigma_sets_subseteq: assumes "A \<subseteq> B" shows "sigma_sets X A \<subseteq> sigma_sets X B"
+proof
+  fix x assume "x \<in> sigma_sets X A" then show "x \<in> sigma_sets X B"
+    by induct (insert \<open>A \<subseteq> B\<close>, auto intro: sigma_sets.intros(2-))
+qed
+
+lemma sigma_sets_mono: assumes "A \<subseteq> sigma_sets X B" shows "sigma_sets X A \<subseteq> sigma_sets X B"
+proof
+  fix x assume "x \<in> sigma_sets X A" then show "x \<in> sigma_sets X B"
+    by induct (insert \<open>A \<subseteq> sigma_sets X B\<close>, auto intro: sigma_sets.intros(2-))
+qed
+
+lemma sigma_sets_mono': assumes "A \<subseteq> B" shows "sigma_sets X A \<subseteq> sigma_sets X B"
+proof
+  fix x assume "x \<in> sigma_sets X A" then show "x \<in> sigma_sets X B"
+    by induct (insert \<open>A \<subseteq> B\<close>, auto intro: sigma_sets.intros(2-))
+qed
+
+lemma sigma_sets_superset_generator: "A \<subseteq> sigma_sets X A"
+  by (auto intro: sigma_sets.Basic)
+
+lemma (in sigma_algebra) restriction_in_sets:
+  fixes A :: "nat \<Rightarrow> 'a set"
+  assumes "S \<in> M"
+  and *: "range A \<subseteq> (\<lambda>A. S \<inter> A) ` M" (is "_ \<subseteq> ?r")
+  shows "range A \<subseteq> M" "(\<Union>i. A i) \<in> (\<lambda>A. S \<inter> A) ` M"
+proof -
+  { fix i have "A i \<in> ?r" using * by auto
+    hence "\<exists>B. A i = B \<inter> S \<and> B \<in> M" by auto
+    hence "A i \<subseteq> S" "A i \<in> M" using \<open>S \<in> M\<close> by auto }
+  thus "range A \<subseteq> M" "(\<Union>i. A i) \<in> (\<lambda>A. S \<inter> A) ` M"
+    by (auto intro!: image_eqI[of _ _ "(\<Union>i. A i)"])
+qed
+
+lemma (in sigma_algebra) restricted_sigma_algebra:
+  assumes "S \<in> M"
+  shows "sigma_algebra S (restricted_space S)"
+  unfolding sigma_algebra_def sigma_algebra_axioms_def
+proof safe
+  show "algebra S (restricted_space S)" using restricted_algebra[OF assms] .
+next
+  fix A :: "nat \<Rightarrow> 'a set" assume "range A \<subseteq> restricted_space S"
+  from restriction_in_sets[OF assms this[simplified]]
+  show "(\<Union>i. A i) \<in> restricted_space S" by simp
+qed
+
+lemma sigma_sets_Int:
+  assumes "A \<in> sigma_sets sp st" "A \<subseteq> sp"
+  shows "op \<inter> A ` sigma_sets sp st = sigma_sets A (op \<inter> A ` st)"
+proof (intro equalityI subsetI)
+  fix x assume "x \<in> op \<inter> A ` sigma_sets sp st"
+  then obtain y where "y \<in> sigma_sets sp st" "x = y \<inter> A" by auto
+  then have "x \<in> sigma_sets (A \<inter> sp) (op \<inter> A ` st)"
+  proof (induct arbitrary: x)
+    case (Compl a)
+    then show ?case
+      by (force intro!: sigma_sets.Compl simp: Diff_Int_distrib ac_simps)
+  next
+    case (Union a)
+    then show ?case
+      by (auto intro!: sigma_sets.Union
+               simp add: UN_extend_simps simp del: UN_simps)
+  qed (auto intro!: sigma_sets.intros(2-))
+  then show "x \<in> sigma_sets A (op \<inter> A ` st)"
+    using \<open>A \<subseteq> sp\<close> by (simp add: Int_absorb2)
+next
+  fix x assume "x \<in> sigma_sets A (op \<inter> A ` st)"
+  then show "x \<in> op \<inter> A ` sigma_sets sp st"
+  proof induct
+    case (Compl a)
+    then obtain x where "a = A \<inter> x" "x \<in> sigma_sets sp st" by auto
+    then show ?case using \<open>A \<subseteq> sp\<close>
+      by (force simp add: image_iff intro!: bexI[of _ "sp - x"] sigma_sets.Compl)
+  next
+    case (Union a)
+    then have "\<forall>i. \<exists>x. x \<in> sigma_sets sp st \<and> a i = A \<inter> x"
+      by (auto simp: image_iff Bex_def)
+    from choice[OF this] guess f ..
+    then show ?case
+      by (auto intro!: bexI[of _ "(\<Union>x. f x)"] sigma_sets.Union
+               simp add: image_iff)
+  qed (auto intro!: sigma_sets.intros(2-))
+qed
+
+lemma sigma_sets_empty_eq: "sigma_sets A {} = {{}, A}"
+proof (intro set_eqI iffI)
+  fix a assume "a \<in> sigma_sets A {}" then show "a \<in> {{}, A}"
+    by induct blast+
+qed (auto intro: sigma_sets.Empty sigma_sets_top)
+
+lemma sigma_sets_single[simp]: "sigma_sets A {A} = {{}, A}"
+proof (intro set_eqI iffI)
+  fix x assume "x \<in> sigma_sets A {A}"
+  then show "x \<in> {{}, A}"
+    by induct blast+
+next
+  fix x assume "x \<in> {{}, A}"
+  then show "x \<in> sigma_sets A {A}"
+    by (auto intro: sigma_sets.Empty sigma_sets_top)
+qed
+
+lemma sigma_sets_sigma_sets_eq:
+  "M \<subseteq> Pow S \<Longrightarrow> sigma_sets S (sigma_sets S M) = sigma_sets S M"
+  by (rule sigma_algebra.sigma_sets_eq[OF sigma_algebra_sigma_sets, of M S]) auto
+
+lemma sigma_sets_singleton:
+  assumes "X \<subseteq> S"
+  shows "sigma_sets S { X } = { {}, X, S - X, S }"
+proof -
+  interpret sigma_algebra S "{ {}, X, S - X, S }"
+    by (rule sigma_algebra_single_set) fact
+  have "sigma_sets S { X } \<subseteq> sigma_sets S { {}, X, S - X, S }"
+    by (rule sigma_sets_subseteq) simp
+  moreover have "\<dots> = { {}, X, S - X, S }"
+    using sigma_sets_eq by simp
+  moreover
+  { fix A assume "A \<in> { {}, X, S - X, S }"
+    then have "A \<in> sigma_sets S { X }"
+      by (auto intro: sigma_sets.intros(2-) sigma_sets_top) }
+  ultimately have "sigma_sets S { X } = sigma_sets S { {}, X, S - X, S }"
+    by (intro antisym) auto
+  with sigma_sets_eq show ?thesis by simp
+qed
+
+lemma restricted_sigma:
+  assumes S: "S \<in> sigma_sets \<Omega> M" and M: "M \<subseteq> Pow \<Omega>"
+  shows "algebra.restricted_space (sigma_sets \<Omega> M) S =
+    sigma_sets S (algebra.restricted_space M S)"
+proof -
+  from S sigma_sets_into_sp[OF M]
+  have "S \<in> sigma_sets \<Omega> M" "S \<subseteq> \<Omega>" by auto
+  from sigma_sets_Int[OF this]
+  show ?thesis by simp
+qed
+
+lemma sigma_sets_vimage_commute:
+  assumes X: "X \<in> \<Omega> \<rightarrow> \<Omega>'"
+  shows "{X -` A \<inter> \<Omega> |A. A \<in> sigma_sets \<Omega>' M'}
+       = sigma_sets \<Omega> {X -` A \<inter> \<Omega> |A. A \<in> M'}" (is "?L = ?R")
+proof
+  show "?L \<subseteq> ?R"
+  proof clarify
+    fix A assume "A \<in> sigma_sets \<Omega>' M'"
+    then show "X -` A \<inter> \<Omega> \<in> ?R"
+    proof induct
+      case Empty then show ?case
+        by (auto intro!: sigma_sets.Empty)
+    next
+      case (Compl B)
+      have [simp]: "X -` (\<Omega>' - B) \<inter> \<Omega> = \<Omega> - (X -` B \<inter> \<Omega>)"
+        by (auto simp add: funcset_mem [OF X])
+      with Compl show ?case
+        by (auto intro!: sigma_sets.Compl)
+    next
+      case (Union F)
+      then show ?case
+        by (auto simp add: vimage_UN UN_extend_simps(4) simp del: UN_simps
+                 intro!: sigma_sets.Union)
+    qed auto
+  qed
+  show "?R \<subseteq> ?L"
+  proof clarify
+    fix A assume "A \<in> ?R"
+    then show "\<exists>B. A = X -` B \<inter> \<Omega> \<and> B \<in> sigma_sets \<Omega>' M'"
+    proof induct
+      case (Basic B) then show ?case by auto
+    next
+      case Empty then show ?case
+        by (auto intro!: sigma_sets.Empty exI[of _ "{}"])
+    next
+      case (Compl B)
+      then obtain A where A: "B = X -` A \<inter> \<Omega>" "A \<in> sigma_sets \<Omega>' M'" by auto
+      then have [simp]: "\<Omega> - B = X -` (\<Omega>' - A) \<inter> \<Omega>"
+        by (auto simp add: funcset_mem [OF X])
+      with A(2) show ?case
+        by (auto intro: sigma_sets.Compl)
+    next
+      case (Union F)
+      then have "\<forall>i. \<exists>B. F i = X -` B \<inter> \<Omega> \<and> B \<in> sigma_sets \<Omega>' M'" by auto
+      from choice[OF this] guess A .. note A = this
+      with A show ?case
+        by (auto simp: vimage_UN[symmetric] intro: sigma_sets.Union)
+    qed
+  qed
+qed
+
+lemma (in ring_of_sets) UNION_in_sets:
+  fixes A:: "nat \<Rightarrow> 'a set"
+  assumes A: "range A \<subseteq> M"
+  shows  "(\<Union>i\<in>{0..<n}. A i) \<in> M"
+proof (induct n)
+  case 0 show ?case by simp
+next
+  case (Suc n)
+  thus ?case
+    by (simp add: atLeastLessThanSuc) (metis A Un UNIV_I image_subset_iff)
+qed
+
+lemma (in ring_of_sets) range_disjointed_sets:
+  assumes A: "range A \<subseteq> M"
+  shows  "range (disjointed A) \<subseteq> M"
+proof (auto simp add: disjointed_def)
+  fix n
+  show "A n - (\<Union>i\<in>{0..<n}. A i) \<in> M" using UNION_in_sets
+    by (metis A Diff UNIV_I image_subset_iff)
+qed
+
+lemma (in algebra) range_disjointed_sets':
+  "range A \<subseteq> M \<Longrightarrow> range (disjointed A) \<subseteq> M"
+  using range_disjointed_sets .
+
+lemma sigma_algebra_disjoint_iff:
+  "sigma_algebra \<Omega> M \<longleftrightarrow> algebra \<Omega> M \<and>
+    (\<forall>A. range A \<subseteq> M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i::nat. A i) \<in> M)"
+proof (auto simp add: sigma_algebra_iff)
+  fix A :: "nat \<Rightarrow> 'a set"
+  assume M: "algebra \<Omega> M"
+     and A: "range A \<subseteq> M"
+     and UnA: "\<forall>A. range A \<subseteq> M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i::nat. A i) \<in> M"
+  hence "range (disjointed A) \<subseteq> M \<longrightarrow>
+         disjoint_family (disjointed A) \<longrightarrow>
+         (\<Union>i. disjointed A i) \<in> M" by blast
+  hence "(\<Union>i. disjointed A i) \<in> M"
+    by (simp add: algebra.range_disjointed_sets'[of \<Omega>] M A disjoint_family_disjointed)
+  thus "(\<Union>i::nat. A i) \<in> M" by (simp add: UN_disjointed_eq)
+qed
+
+subsubsection \<open>Ring generated by a semiring\<close>
+
+definition (in semiring_of_sets)
+  "generated_ring = { \<Union>C | C. C \<subseteq> M \<and> finite C \<and> disjoint C }"
+
+lemma (in semiring_of_sets) generated_ringE[elim?]:
+  assumes "a \<in> generated_ring"
+  obtains C where "finite C" "disjoint C" "C \<subseteq> M" "a = \<Union>C"
+  using assms unfolding generated_ring_def by auto
+
+lemma (in semiring_of_sets) generated_ringI[intro?]:
+  assumes "finite C" "disjoint C" "C \<subseteq> M" "a = \<Union>C"
+  shows "a \<in> generated_ring"
+  using assms unfolding generated_ring_def by auto
+
+lemma (in semiring_of_sets) generated_ringI_Basic:
+  "A \<in> M \<Longrightarrow> A \<in> generated_ring"
+  by (rule generated_ringI[of "{A}"]) (auto simp: disjoint_def)
+
+lemma (in semiring_of_sets) generated_ring_disjoint_Un[intro]:
+  assumes a: "a \<in> generated_ring" and b: "b \<in> generated_ring"
+  and "a \<inter> b = {}"
+  shows "a \<union> b \<in> generated_ring"
+proof -
+  from a guess Ca .. note Ca = this
+  from b guess Cb .. note Cb = this
+  show ?thesis
+  proof
+    show "disjoint (Ca \<union> Cb)"
+      using \<open>a \<inter> b = {}\<close> Ca Cb by (auto intro!: disjoint_union)
+  qed (insert Ca Cb, auto)
+qed
+
+lemma (in semiring_of_sets) generated_ring_empty: "{} \<in> generated_ring"
+  by (auto simp: generated_ring_def disjoint_def)
+
+lemma (in semiring_of_sets) generated_ring_disjoint_Union:
+  assumes "finite A" shows "A \<subseteq> generated_ring \<Longrightarrow> disjoint A \<Longrightarrow> \<Union>A \<in> generated_ring"
+  using assms by (induct A) (auto simp: disjoint_def intro!: generated_ring_disjoint_Un generated_ring_empty)
+
+lemma (in semiring_of_sets) generated_ring_disjoint_UNION:
+  "finite I \<Longrightarrow> disjoint (A ` I) \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> A i \<in> generated_ring) \<Longrightarrow> UNION I A \<in> generated_ring"
+  by (intro generated_ring_disjoint_Union) auto
+
+lemma (in semiring_of_sets) generated_ring_Int:
+  assumes a: "a \<in> generated_ring" and b: "b \<in> generated_ring"
+  shows "a \<inter> b \<in> generated_ring"
+proof -
+  from a guess Ca .. note Ca = this
+  from b guess Cb .. note Cb = this
+  define C where "C = (\<lambda>(a,b). a \<inter> b)` (Ca\<times>Cb)"
+  show ?thesis
+  proof
+    show "disjoint C"
+    proof (simp add: disjoint_def C_def, intro ballI impI)
+      fix a1 b1 a2 b2 assume sets: "a1 \<in> Ca" "b1 \<in> Cb" "a2 \<in> Ca" "b2 \<in> Cb"
+      assume "a1 \<inter> b1 \<noteq> a2 \<inter> b2"
+      then have "a1 \<noteq> a2 \<or> b1 \<noteq> b2" by auto
+      then show "(a1 \<inter> b1) \<inter> (a2 \<inter> b2) = {}"
+      proof
+        assume "a1 \<noteq> a2"
+        with sets Ca have "a1 \<inter> a2 = {}"
+          by (auto simp: disjoint_def)
+        then show ?thesis by auto
+      next
+        assume "b1 \<noteq> b2"
+        with sets Cb have "b1 \<inter> b2 = {}"
+          by (auto simp: disjoint_def)
+        then show ?thesis by auto
+      qed
+    qed
+  qed (insert Ca Cb, auto simp: C_def)
+qed
+
+lemma (in semiring_of_sets) generated_ring_Inter:
+  assumes "finite A" "A \<noteq> {}" shows "A \<subseteq> generated_ring \<Longrightarrow> \<Inter>A \<in> generated_ring"
+  using assms by (induct A rule: finite_ne_induct) (auto intro: generated_ring_Int)
+
+lemma (in semiring_of_sets) generated_ring_INTER:
+  "finite I \<Longrightarrow> I \<noteq> {} \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> A i \<in> generated_ring) \<Longrightarrow> INTER I A \<in> generated_ring"
+  by (intro generated_ring_Inter) auto
+
+lemma (in semiring_of_sets) generating_ring:
+  "ring_of_sets \<Omega> generated_ring"
+proof (rule ring_of_setsI)
+  let ?R = generated_ring
+  show "?R \<subseteq> Pow \<Omega>"
+    using sets_into_space by (auto simp: generated_ring_def generated_ring_empty)
+  show "{} \<in> ?R" by (rule generated_ring_empty)
+
+  { fix a assume a: "a \<in> ?R" then guess Ca .. note Ca = this
+    fix b assume b: "b \<in> ?R" then guess Cb .. note Cb = this
+
+    show "a - b \<in> ?R"
+    proof cases
+      assume "Cb = {}" with Cb \<open>a \<in> ?R\<close> show ?thesis
+        by simp
+    next
+      assume "Cb \<noteq> {}"
+      with Ca Cb have "a - b = (\<Union>a'\<in>Ca. \<Inter>b'\<in>Cb. a' - b')" by auto
+      also have "\<dots> \<in> ?R"
+      proof (intro generated_ring_INTER generated_ring_disjoint_UNION)
+        fix a b assume "a \<in> Ca" "b \<in> Cb"
+        with Ca Cb Diff_cover[of a b] show "a - b \<in> ?R"
+          by (auto simp add: generated_ring_def)
+            (metis DiffI Diff_eq_empty_iff empty_iff)
+      next
+        show "disjoint ((\<lambda>a'. \<Inter>b'\<in>Cb. a' - b')`Ca)"
+          using Ca by (auto simp add: disjoint_def \<open>Cb \<noteq> {}\<close>)
+      next
+        show "finite Ca" "finite Cb" "Cb \<noteq> {}" by fact+
+      qed
+      finally show "a - b \<in> ?R" .
+    qed }
+  note Diff = this
+
+  fix a b assume sets: "a \<in> ?R" "b \<in> ?R"
+  have "a \<union> b = (a - b) \<union> (a \<inter> b) \<union> (b - a)" by auto
+  also have "\<dots> \<in> ?R"
+    by (intro sets generated_ring_disjoint_Un generated_ring_Int Diff) auto
+  finally show "a \<union> b \<in> ?R" .
+qed
+
+lemma (in semiring_of_sets) sigma_sets_generated_ring_eq: "sigma_sets \<Omega> generated_ring = sigma_sets \<Omega> M"
+proof
+  interpret M: sigma_algebra \<Omega> "sigma_sets \<Omega> M"
+    using space_closed by (rule sigma_algebra_sigma_sets)
+  show "sigma_sets \<Omega> generated_ring \<subseteq> sigma_sets \<Omega> M"
+    by (blast intro!: sigma_sets_mono elim: generated_ringE)
+qed (auto intro!: generated_ringI_Basic sigma_sets_mono)
+
+subsubsection \<open>A Two-Element Series\<close>
+
+definition binaryset :: "'a set \<Rightarrow> 'a set \<Rightarrow> nat \<Rightarrow> 'a set"
+  where "binaryset A B = (\<lambda>x. {})(0 := A, Suc 0 := B)"
+
+lemma range_binaryset_eq: "range(binaryset A B) = {A,B,{}}"
+  apply (simp add: binaryset_def)
+  apply (rule set_eqI)
+  apply (auto simp add: image_iff)
+  done
+
+lemma UN_binaryset_eq: "(\<Union>i. binaryset A B i) = A \<union> B"
+  by (simp add: range_binaryset_eq cong del: strong_SUP_cong)
+
+subsubsection \<open>Closed CDI\<close>
+
+definition closed_cdi where
+  "closed_cdi \<Omega> M \<longleftrightarrow>
+   M \<subseteq> Pow \<Omega> &
+   (\<forall>s \<in> M. \<Omega> - s \<in> M) &
+   (\<forall>A. (range A \<subseteq> M) & (A 0 = {}) & (\<forall>n. A n \<subseteq> A (Suc n)) \<longrightarrow>
+        (\<Union>i. A i) \<in> M) &
+   (\<forall>A. (range A \<subseteq> M) & disjoint_family A \<longrightarrow> (\<Union>i::nat. A i) \<in> M)"
+
+inductive_set
+  smallest_ccdi_sets :: "'a set \<Rightarrow> 'a set set \<Rightarrow> 'a set set"
+  for \<Omega> M
+  where
+    Basic [intro]:
+      "a \<in> M \<Longrightarrow> a \<in> smallest_ccdi_sets \<Omega> M"
+  | Compl [intro]:
+      "a \<in> smallest_ccdi_sets \<Omega> M \<Longrightarrow> \<Omega> - a \<in> smallest_ccdi_sets \<Omega> M"
+  | Inc:
+      "range A \<in> Pow(smallest_ccdi_sets \<Omega> M) \<Longrightarrow> A 0 = {} \<Longrightarrow> (\<And>n. A n \<subseteq> A (Suc n))
+       \<Longrightarrow> (\<Union>i. A i) \<in> smallest_ccdi_sets \<Omega> M"
+  | Disj:
+      "range A \<in> Pow(smallest_ccdi_sets \<Omega> M) \<Longrightarrow> disjoint_family A
+       \<Longrightarrow> (\<Union>i::nat. A i) \<in> smallest_ccdi_sets \<Omega> M"
+
+lemma (in subset_class) smallest_closed_cdi1: "M \<subseteq> smallest_ccdi_sets \<Omega> M"
+  by auto
+
+lemma (in subset_class) smallest_ccdi_sets: "smallest_ccdi_sets \<Omega> M \<subseteq> Pow \<Omega>"
+  apply (rule subsetI)
+  apply (erule smallest_ccdi_sets.induct)
+  apply (auto intro: range_subsetD dest: sets_into_space)
+  done
+
+lemma (in subset_class) smallest_closed_cdi2: "closed_cdi \<Omega> (smallest_ccdi_sets \<Omega> M)"
+  apply (auto simp add: closed_cdi_def smallest_ccdi_sets)
+  apply (blast intro: smallest_ccdi_sets.Inc smallest_ccdi_sets.Disj) +
+  done
+
+lemma closed_cdi_subset: "closed_cdi \<Omega> M \<Longrightarrow> M \<subseteq> Pow \<Omega>"
+  by (simp add: closed_cdi_def)
+
+lemma closed_cdi_Compl: "closed_cdi \<Omega> M \<Longrightarrow> s \<in> M \<Longrightarrow> \<Omega> - s \<in> M"
+  by (simp add: closed_cdi_def)
+
+lemma closed_cdi_Inc:
+  "closed_cdi \<Omega> M \<Longrightarrow> range A \<subseteq> M \<Longrightarrow> A 0 = {} \<Longrightarrow> (!!n. A n \<subseteq> A (Suc n)) \<Longrightarrow> (\<Union>i. A i) \<in> M"
+  by (simp add: closed_cdi_def)
+
+lemma closed_cdi_Disj:
+  "closed_cdi \<Omega> M \<Longrightarrow> range A \<subseteq> M \<Longrightarrow> disjoint_family A \<Longrightarrow> (\<Union>i::nat. A i) \<in> M"
+  by (simp add: closed_cdi_def)
+
+lemma closed_cdi_Un:
+  assumes cdi: "closed_cdi \<Omega> M" and empty: "{} \<in> M"
+      and A: "A \<in> M" and B: "B \<in> M"
+      and disj: "A \<inter> B = {}"
+    shows "A \<union> B \<in> M"
+proof -
+  have ra: "range (binaryset A B) \<subseteq> M"
+   by (simp add: range_binaryset_eq empty A B)
+ have di:  "disjoint_family (binaryset A B)" using disj
+   by (simp add: disjoint_family_on_def binaryset_def Int_commute)
+ from closed_cdi_Disj [OF cdi ra di]
+ show ?thesis
+   by (simp add: UN_binaryset_eq)
+qed
+
+lemma (in algebra) smallest_ccdi_sets_Un:
+  assumes A: "A \<in> smallest_ccdi_sets \<Omega> M" and B: "B \<in> smallest_ccdi_sets \<Omega> M"
+      and disj: "A \<inter> B = {}"
+    shows "A \<union> B \<in> smallest_ccdi_sets \<Omega> M"
+proof -
+  have ra: "range (binaryset A B) \<in> Pow (smallest_ccdi_sets \<Omega> M)"
+    by (simp add: range_binaryset_eq  A B smallest_ccdi_sets.Basic)
+  have di:  "disjoint_family (binaryset A B)" using disj
+    by (simp add: disjoint_family_on_def binaryset_def Int_commute)
+  from Disj [OF ra di]
+  show ?thesis
+    by (simp add: UN_binaryset_eq)
+qed
+
+lemma (in algebra) smallest_ccdi_sets_Int1:
+  assumes a: "a \<in> M"
+  shows "b \<in> smallest_ccdi_sets \<Omega> M \<Longrightarrow> a \<inter> b \<in> smallest_ccdi_sets \<Omega> M"
+proof (induct rule: smallest_ccdi_sets.induct)
+  case (Basic x)
+  thus ?case
+    by (metis a Int smallest_ccdi_sets.Basic)
+next
+  case (Compl x)
+  have "a \<inter> (\<Omega> - x) = \<Omega> - ((\<Omega> - a) \<union> (a \<inter> x))"
+    by blast
+  also have "... \<in> smallest_ccdi_sets \<Omega> M"
+    by (metis smallest_ccdi_sets.Compl a Compl(2) Diff_Int2 Diff_Int_distrib2
+           Diff_disjoint Int_Diff Int_empty_right smallest_ccdi_sets_Un
+           smallest_ccdi_sets.Basic smallest_ccdi_sets.Compl)
+  finally show ?case .
+next
+  case (Inc A)
+  have 1: "(\<Union>i. (\<lambda>i. a \<inter> A i) i) = a \<inter> (\<Union>i. A i)"
+    by blast
+  have "range (\<lambda>i. a \<inter> A i) \<in> Pow(smallest_ccdi_sets \<Omega> M)" using Inc
+    by blast
+  moreover have "(\<lambda>i. a \<inter> A i) 0 = {}"
+    by (simp add: Inc)
+  moreover have "!!n. (\<lambda>i. a \<inter> A i) n \<subseteq> (\<lambda>i. a \<inter> A i) (Suc n)" using Inc
+    by blast
+  ultimately have 2: "(\<Union>i. (\<lambda>i. a \<inter> A i) i) \<in> smallest_ccdi_sets \<Omega> M"
+    by (rule smallest_ccdi_sets.Inc)
+  show ?case
+    by (metis 1 2)
+next
+  case (Disj A)
+  have 1: "(\<Union>i. (\<lambda>i. a \<inter> A i) i) = a \<inter> (\<Union>i. A i)"
+    by blast
+  have "range (\<lambda>i. a \<inter> A i) \<in> Pow(smallest_ccdi_sets \<Omega> M)" using Disj
+    by blast
+  moreover have "disjoint_family (\<lambda>i. a \<inter> A i)" using Disj
+    by (auto simp add: disjoint_family_on_def)
+  ultimately have 2: "(\<Union>i. (\<lambda>i. a \<inter> A i) i) \<in> smallest_ccdi_sets \<Omega> M"
+    by (rule smallest_ccdi_sets.Disj)
+  show ?case
+    by (metis 1 2)
+qed
+
+
+lemma (in algebra) smallest_ccdi_sets_Int:
+  assumes b: "b \<in> smallest_ccdi_sets \<Omega> M"
+  shows "a \<in> smallest_ccdi_sets \<Omega> M \<Longrightarrow> a \<inter> b \<in> smallest_ccdi_sets \<Omega> M"
+proof (induct rule: smallest_ccdi_sets.induct)
+  case (Basic x)
+  thus ?case
+    by (metis b smallest_ccdi_sets_Int1)
+next
+  case (Compl x)
+  have "(\<Omega> - x) \<inter> b = \<Omega> - (x \<inter> b \<union> (\<Omega> - b))"
+    by blast
+  also have "... \<in> smallest_ccdi_sets \<Omega> M"
+    by (metis Compl(2) Diff_disjoint Int_Diff Int_commute Int_empty_right b
+           smallest_ccdi_sets.Compl smallest_ccdi_sets_Un)
+  finally show ?case .
+next
+  case (Inc A)
+  have 1: "(\<Union>i. (\<lambda>i. A i \<inter> b) i) = (\<Union>i. A i) \<inter> b"
+    by blast
+  have "range (\<lambda>i. A i \<inter> b) \<in> Pow(smallest_ccdi_sets \<Omega> M)" using Inc
+    by blast
+  moreover have "(\<lambda>i. A i \<inter> b) 0 = {}"
+    by (simp add: Inc)
+  moreover have "!!n. (\<lambda>i. A i \<inter> b) n \<subseteq> (\<lambda>i. A i \<inter> b) (Suc n)" using Inc
+    by blast
+  ultimately have 2: "(\<Union>i. (\<lambda>i. A i \<inter> b) i) \<in> smallest_ccdi_sets \<Omega> M"
+    by (rule smallest_ccdi_sets.Inc)
+  show ?case
+    by (metis 1 2)
+next
+  case (Disj A)
+  have 1: "(\<Union>i. (\<lambda>i. A i \<inter> b) i) = (\<Union>i. A i) \<inter> b"
+    by blast
+  have "range (\<lambda>i. A i \<inter> b) \<in> Pow(smallest_ccdi_sets \<Omega> M)" using Disj
+    by blast
+  moreover have "disjoint_family (\<lambda>i. A i \<inter> b)" using Disj
+    by (auto simp add: disjoint_family_on_def)
+  ultimately have 2: "(\<Union>i. (\<lambda>i. A i \<inter> b) i) \<in> smallest_ccdi_sets \<Omega> M"
+    by (rule smallest_ccdi_sets.Disj)
+  show ?case
+    by (metis 1 2)
+qed
+
+lemma (in algebra) sigma_property_disjoint_lemma:
+  assumes sbC: "M \<subseteq> C"
+      and ccdi: "closed_cdi \<Omega> C"
+  shows "sigma_sets \<Omega> M \<subseteq> C"
+proof -
+  have "smallest_ccdi_sets \<Omega> M \<in> {B . M \<subseteq> B \<and> sigma_algebra \<Omega> B}"
+    apply (auto simp add: sigma_algebra_disjoint_iff algebra_iff_Int
+            smallest_ccdi_sets_Int)
+    apply (metis Union_Pow_eq Union_upper subsetD smallest_ccdi_sets)
+    apply (blast intro: smallest_ccdi_sets.Disj)
+    done
+  hence "sigma_sets (\<Omega>) (M) \<subseteq> smallest_ccdi_sets \<Omega> M"
+    by clarsimp
+       (drule sigma_algebra.sigma_sets_subset [where a="M"], auto)
+  also have "...  \<subseteq> C"
+    proof
+      fix x
+      assume x: "x \<in> smallest_ccdi_sets \<Omega> M"
+      thus "x \<in> C"
+        proof (induct rule: smallest_ccdi_sets.induct)
+          case (Basic x)
+          thus ?case
+            by (metis Basic subsetD sbC)
+        next
+          case (Compl x)
+          thus ?case
+            by (blast intro: closed_cdi_Compl [OF ccdi, simplified])
+        next
+          case (Inc A)
+          thus ?case
+               by (auto intro: closed_cdi_Inc [OF ccdi, simplified])
+        next
+          case (Disj A)
+          thus ?case
+               by (auto intro: closed_cdi_Disj [OF ccdi, simplified])
+        qed
+    qed
+  finally show ?thesis .
+qed
+
+lemma (in algebra) sigma_property_disjoint:
+  assumes sbC: "M \<subseteq> C"
+      and compl: "!!s. s \<in> C \<inter> sigma_sets (\<Omega>) (M) \<Longrightarrow> \<Omega> - s \<in> C"
+      and inc: "!!A. range A \<subseteq> C \<inter> sigma_sets (\<Omega>) (M)
+                     \<Longrightarrow> A 0 = {} \<Longrightarrow> (!!n. A n \<subseteq> A (Suc n))
+                     \<Longrightarrow> (\<Union>i. A i) \<in> C"
+      and disj: "!!A. range A \<subseteq> C \<inter> sigma_sets (\<Omega>) (M)
+                      \<Longrightarrow> disjoint_family A \<Longrightarrow> (\<Union>i::nat. A i) \<in> C"
+  shows "sigma_sets (\<Omega>) (M) \<subseteq> C"
+proof -
+  have "sigma_sets (\<Omega>) (M) \<subseteq> C \<inter> sigma_sets (\<Omega>) (M)"
+    proof (rule sigma_property_disjoint_lemma)
+      show "M \<subseteq> C \<inter> sigma_sets (\<Omega>) (M)"
+        by (metis Int_greatest Set.subsetI sbC sigma_sets.Basic)
+    next
+      show "closed_cdi \<Omega> (C \<inter> sigma_sets (\<Omega>) (M))"
+        by (simp add: closed_cdi_def compl inc disj)
+           (metis PowI Set.subsetI le_infI2 sigma_sets_into_sp space_closed
+             IntE sigma_sets.Compl range_subsetD sigma_sets.Union)
+    qed
+  thus ?thesis
+    by blast
+qed
+
+subsubsection \<open>Dynkin systems\<close>
+
+locale dynkin_system = subset_class +
+  assumes space: "\<Omega> \<in> M"
+    and   compl[intro!]: "\<And>A. A \<in> M \<Longrightarrow> \<Omega> - A \<in> M"
+    and   UN[intro!]: "\<And>A. disjoint_family A \<Longrightarrow> range A \<subseteq> M
+                           \<Longrightarrow> (\<Union>i::nat. A i) \<in> M"
+
+lemma (in dynkin_system) empty[intro, simp]: "{} \<in> M"
+  using space compl[of "\<Omega>"] by simp
+
+lemma (in dynkin_system) diff:
+  assumes sets: "D \<in> M" "E \<in> M" and "D \<subseteq> E"
+  shows "E - D \<in> M"
+proof -
+  let ?f = "\<lambda>x. if x = 0 then D else if x = Suc 0 then \<Omega> - E else {}"
+  have "range ?f = {D, \<Omega> - E, {}}"
+    by (auto simp: image_iff)
+  moreover have "D \<union> (\<Omega> - E) = (\<Union>i. ?f i)"
+    by (auto simp: image_iff split: if_split_asm)
+  moreover
+  have "disjoint_family ?f" unfolding disjoint_family_on_def
+    using \<open>D \<in> M\<close>[THEN sets_into_space] \<open>D \<subseteq> E\<close> by auto
+  ultimately have "\<Omega> - (D \<union> (\<Omega> - E)) \<in> M"
+    using sets by auto
+  also have "\<Omega> - (D \<union> (\<Omega> - E)) = E - D"
+    using assms sets_into_space by auto
+  finally show ?thesis .
+qed
+
+lemma dynkin_systemI:
+  assumes "\<And> A. A \<in> M \<Longrightarrow> A \<subseteq> \<Omega>" "\<Omega> \<in> M"
+  assumes "\<And> A. A \<in> M \<Longrightarrow> \<Omega> - A \<in> M"
+  assumes "\<And> A. disjoint_family A \<Longrightarrow> range A \<subseteq> M
+          \<Longrightarrow> (\<Union>i::nat. A i) \<in> M"
+  shows "dynkin_system \<Omega> M"
+  using assms by (auto simp: dynkin_system_def dynkin_system_axioms_def subset_class_def)
+
+lemma dynkin_systemI':
+  assumes 1: "\<And> A. A \<in> M \<Longrightarrow> A \<subseteq> \<Omega>"
+  assumes empty: "{} \<in> M"
+  assumes Diff: "\<And> A. A \<in> M \<Longrightarrow> \<Omega> - A \<in> M"
+  assumes 2: "\<And> A. disjoint_family A \<Longrightarrow> range A \<subseteq> M
+          \<Longrightarrow> (\<Union>i::nat. A i) \<in> M"
+  shows "dynkin_system \<Omega> M"
+proof -
+  from Diff[OF empty] have "\<Omega> \<in> M" by auto
+  from 1 this Diff 2 show ?thesis
+    by (intro dynkin_systemI) auto
+qed
+
+lemma dynkin_system_trivial:
+  shows "dynkin_system A (Pow A)"
+  by (rule dynkin_systemI) auto
+
+lemma sigma_algebra_imp_dynkin_system:
+  assumes "sigma_algebra \<Omega> M" shows "dynkin_system \<Omega> M"
+proof -
+  interpret sigma_algebra \<Omega> M by fact
+  show ?thesis using sets_into_space by (fastforce intro!: dynkin_systemI)
+qed
+
+subsubsection "Intersection sets systems"
+
+definition "Int_stable M \<longleftrightarrow> (\<forall> a \<in> M. \<forall> b \<in> M. a \<inter> b \<in> M)"
+
+lemma (in algebra) Int_stable: "Int_stable M"
+  unfolding Int_stable_def by auto
+
+lemma Int_stableI:
+  "(\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<inter> b \<in> A) \<Longrightarrow> Int_stable A"
+  unfolding Int_stable_def by auto
+
+lemma Int_stableD:
+  "Int_stable M \<Longrightarrow> a \<in> M \<Longrightarrow> b \<in> M \<Longrightarrow> a \<inter> b \<in> M"
+  unfolding Int_stable_def by auto
+
+lemma (in dynkin_system) sigma_algebra_eq_Int_stable:
+  "sigma_algebra \<Omega> M \<longleftrightarrow> Int_stable M"
+proof
+  assume "sigma_algebra \<Omega> M" then show "Int_stable M"
+    unfolding sigma_algebra_def using algebra.Int_stable by auto
+next
+  assume "Int_stable M"
+  show "sigma_algebra \<Omega> M"
+    unfolding sigma_algebra_disjoint_iff algebra_iff_Un
+  proof (intro conjI ballI allI impI)
+    show "M \<subseteq> Pow (\<Omega>)" using sets_into_space by auto
+  next
+    fix A B assume "A \<in> M" "B \<in> M"
+    then have "A \<union> B = \<Omega> - ((\<Omega> - A) \<inter> (\<Omega> - B))"
+              "\<Omega> - A \<in> M" "\<Omega> - B \<in> M"
+      using sets_into_space by auto
+    then show "A \<union> B \<in> M"
+      using \<open>Int_stable M\<close> unfolding Int_stable_def by auto
+  qed auto
+qed
+
+subsubsection "Smallest Dynkin systems"
+
+definition dynkin where
+  "dynkin \<Omega> M =  (\<Inter>{D. dynkin_system \<Omega> D \<and> M \<subseteq> D})"
+
+lemma dynkin_system_dynkin:
+  assumes "M \<subseteq> Pow (\<Omega>)"
+  shows "dynkin_system \<Omega> (dynkin \<Omega> M)"
+proof (rule dynkin_systemI)
+  fix A assume "A \<in> dynkin \<Omega> M"
+  moreover
+  { fix D assume "A \<in> D" and d: "dynkin_system \<Omega> D"
+    then have "A \<subseteq> \<Omega>" by (auto simp: dynkin_system_def subset_class_def) }
+  moreover have "{D. dynkin_system \<Omega> D \<and> M \<subseteq> D} \<noteq> {}"
+    using assms dynkin_system_trivial by fastforce
+  ultimately show "A \<subseteq> \<Omega>"
+    unfolding dynkin_def using assms
+    by auto
+next
+  show "\<Omega> \<in> dynkin \<Omega> M"
+    unfolding dynkin_def using dynkin_system.space by fastforce
+next
+  fix A assume "A \<in> dynkin \<Omega> M"
+  then show "\<Omega> - A \<in> dynkin \<Omega> M"
+    unfolding dynkin_def using dynkin_system.compl by force
+next
+  fix A :: "nat \<Rightarrow> 'a set"
+  assume A: "disjoint_family A" "range A \<subseteq> dynkin \<Omega> M"
+  show "(\<Union>i. A i) \<in> dynkin \<Omega> M" unfolding dynkin_def
+  proof (simp, safe)
+    fix D assume "dynkin_system \<Omega> D" "M \<subseteq> D"
+    with A have "(\<Union>i. A i) \<in> D"
+      by (intro dynkin_system.UN) (auto simp: dynkin_def)
+    then show "(\<Union>i. A i) \<in> D" by auto
+  qed
+qed
+
+lemma dynkin_Basic[intro]: "A \<in> M \<Longrightarrow> A \<in> dynkin \<Omega> M"
+  unfolding dynkin_def by auto
+
+lemma (in dynkin_system) restricted_dynkin_system:
+  assumes "D \<in> M"
+  shows "dynkin_system \<Omega> {Q. Q \<subseteq> \<Omega> \<and> Q \<inter> D \<in> M}"
+proof (rule dynkin_systemI, simp_all)
+  have "\<Omega> \<inter> D = D"
+    using \<open>D \<in> M\<close> sets_into_space by auto
+  then show "\<Omega> \<inter> D \<in> M"
+    using \<open>D \<in> M\<close> by auto
+next
+  fix A assume "A \<subseteq> \<Omega> \<and> A \<inter> D \<in> M"
+  moreover have "(\<Omega> - A) \<inter> D = (\<Omega> - (A \<inter> D)) - (\<Omega> - D)"
+    by auto
+  ultimately show "\<Omega> - A \<subseteq> \<Omega> \<and> (\<Omega> - A) \<inter> D \<in> M"
+    using  \<open>D \<in> M\<close> by (auto intro: diff)
+next
+  fix A :: "nat \<Rightarrow> 'a set"
+  assume "disjoint_family A" "range A \<subseteq> {Q. Q \<subseteq> \<Omega> \<and> Q \<inter> D \<in> M}"
+  then have "\<And>i. A i \<subseteq> \<Omega>" "disjoint_family (\<lambda>i. A i \<inter> D)"
+    "range (\<lambda>i. A i \<inter> D) \<subseteq> M" "(\<Union>x. A x) \<inter> D = (\<Union>x. A x \<inter> D)"
+    by ((fastforce simp: disjoint_family_on_def)+)
+  then show "(\<Union>x. A x) \<subseteq> \<Omega> \<and> (\<Union>x. A x) \<inter> D \<in> M"
+    by (auto simp del: UN_simps)
+qed
+
+lemma (in dynkin_system) dynkin_subset:
+  assumes "N \<subseteq> M"
+  shows "dynkin \<Omega> N \<subseteq> M"
+proof -
+  have "dynkin_system \<Omega> M" ..
+  then have "dynkin_system \<Omega> M"
+    using assms unfolding dynkin_system_def dynkin_system_axioms_def subset_class_def by simp
+  with \<open>N \<subseteq> M\<close> show ?thesis by (auto simp add: dynkin_def)
+qed
+
+lemma sigma_eq_dynkin:
+  assumes sets: "M \<subseteq> Pow \<Omega>"
+  assumes "Int_stable M"
+  shows "sigma_sets \<Omega> M = dynkin \<Omega> M"
+proof -
+  have "dynkin \<Omega> M \<subseteq> sigma_sets (\<Omega>) (M)"
+    using sigma_algebra_imp_dynkin_system
+    unfolding dynkin_def sigma_sets_least_sigma_algebra[OF sets] by auto
+  moreover
+  interpret dynkin_system \<Omega> "dynkin \<Omega> M"
+    using dynkin_system_dynkin[OF sets] .
+  have "sigma_algebra \<Omega> (dynkin \<Omega> M)"
+    unfolding sigma_algebra_eq_Int_stable Int_stable_def
+  proof (intro ballI)
+    fix A B assume "A \<in> dynkin \<Omega> M" "B \<in> dynkin \<Omega> M"
+    let ?D = "\<lambda>E. {Q. Q \<subseteq> \<Omega> \<and> Q \<inter> E \<in> dynkin \<Omega> M}"
+    have "M \<subseteq> ?D B"
+    proof
+      fix E assume "E \<in> M"
+      then have "M \<subseteq> ?D E" "E \<in> dynkin \<Omega> M"
+        using sets_into_space \<open>Int_stable M\<close> by (auto simp: Int_stable_def)
+      then have "dynkin \<Omega> M \<subseteq> ?D E"
+        using restricted_dynkin_system \<open>E \<in> dynkin \<Omega> M\<close>
+        by (intro dynkin_system.dynkin_subset) simp_all
+      then have "B \<in> ?D E"
+        using \<open>B \<in> dynkin \<Omega> M\<close> by auto
+      then have "E \<inter> B \<in> dynkin \<Omega> M"
+        by (subst Int_commute) simp
+      then show "E \<in> ?D B"
+        using sets \<open>E \<in> M\<close> by auto
+    qed
+    then have "dynkin \<Omega> M \<subseteq> ?D B"
+      using restricted_dynkin_system \<open>B \<in> dynkin \<Omega> M\<close>
+      by (intro dynkin_system.dynkin_subset) simp_all
+    then show "A \<inter> B \<in> dynkin \<Omega> M"
+      using \<open>A \<in> dynkin \<Omega> M\<close> sets_into_space by auto
+  qed
+  from sigma_algebra.sigma_sets_subset[OF this, of "M"]
+  have "sigma_sets (\<Omega>) (M) \<subseteq> dynkin \<Omega> M" by auto
+  ultimately have "sigma_sets (\<Omega>) (M) = dynkin \<Omega> M" by auto
+  then show ?thesis
+    by (auto simp: dynkin_def)
+qed
+
+lemma (in dynkin_system) dynkin_idem:
+  "dynkin \<Omega> M = M"
+proof -
+  have "dynkin \<Omega> M = M"
+  proof
+    show "M \<subseteq> dynkin \<Omega> M"
+      using dynkin_Basic by auto
+    show "dynkin \<Omega> M \<subseteq> M"
+      by (intro dynkin_subset) auto
+  qed
+  then show ?thesis
+    by (auto simp: dynkin_def)
+qed
+
+lemma (in dynkin_system) dynkin_lemma:
+  assumes "Int_stable E"
+  and E: "E \<subseteq> M" "M \<subseteq> sigma_sets \<Omega> E"
+  shows "sigma_sets \<Omega> E = M"
+proof -
+  have "E \<subseteq> Pow \<Omega>"
+    using E sets_into_space by force
+  then have *: "sigma_sets \<Omega> E = dynkin \<Omega> E"
+    using \<open>Int_stable E\<close> by (rule sigma_eq_dynkin)
+  then have "dynkin \<Omega> E = M"
+    using assms dynkin_subset[OF E(1)] by simp
+  with * show ?thesis
+    using assms by (auto simp: dynkin_def)
+qed
+
+subsubsection \<open>Induction rule for intersection-stable generators\<close>
+
+text \<open>The reason to introduce Dynkin-systems is the following induction rules for $\sigma$-algebras
+generated by a generator closed under intersection.\<close>
+
+lemma sigma_sets_induct_disjoint[consumes 3, case_names basic empty compl union]:
+  assumes "Int_stable G"
+    and closed: "G \<subseteq> Pow \<Omega>"
+    and A: "A \<in> sigma_sets \<Omega> G"
+  assumes basic: "\<And>A. A \<in> G \<Longrightarrow> P A"
+    and empty: "P {}"
+    and compl: "\<And>A. A \<in> sigma_sets \<Omega> G \<Longrightarrow> P A \<Longrightarrow> P (\<Omega> - A)"
+    and union: "\<And>A. disjoint_family A \<Longrightarrow> range A \<subseteq> sigma_sets \<Omega> G \<Longrightarrow> (\<And>i. P (A i)) \<Longrightarrow> P (\<Union>i::nat. A i)"
+  shows "P A"
+proof -
+  let ?D = "{ A \<in> sigma_sets \<Omega> G. P A }"
+  interpret sigma_algebra \<Omega> "sigma_sets \<Omega> G"
+    using closed by (rule sigma_algebra_sigma_sets)
+  from compl[OF _ empty] closed have space: "P \<Omega>" by simp
+  interpret dynkin_system \<Omega> ?D
+    by standard (auto dest: sets_into_space intro!: space compl union)
+  have "sigma_sets \<Omega> G = ?D"
+    by (rule dynkin_lemma) (auto simp: basic \<open>Int_stable G\<close>)
+  with A show ?thesis by auto
+qed
+
+subsection \<open>Measure type\<close>
+
+definition positive :: "'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> bool" where
+  "positive M \<mu> \<longleftrightarrow> \<mu> {} = 0"
+
+definition countably_additive :: "'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> bool" where
+  "countably_additive M f \<longleftrightarrow> (\<forall>A. range A \<subseteq> M \<longrightarrow> disjoint_family A \<longrightarrow> (\<Union>i. A i) \<in> M \<longrightarrow>
+    (\<Sum>i. f (A i)) = f (\<Union>i. A i))"
+
+definition measure_space :: "'a set \<Rightarrow> 'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> bool" where
+  "measure_space \<Omega> A \<mu> \<longleftrightarrow> sigma_algebra \<Omega> A \<and> positive A \<mu> \<and> countably_additive A \<mu>"
+
+typedef 'a measure = "{(\<Omega>::'a set, A, \<mu>). (\<forall>a\<in>-A. \<mu> a = 0) \<and> measure_space \<Omega> A \<mu> }"
+proof
+  have "sigma_algebra UNIV {{}, UNIV}"
+    by (auto simp: sigma_algebra_iff2)
+  then show "(UNIV, {{}, UNIV}, \<lambda>A. 0) \<in> {(\<Omega>, A, \<mu>). (\<forall>a\<in>-A. \<mu> a = 0) \<and> measure_space \<Omega> A \<mu>} "
+    by (auto simp: measure_space_def positive_def countably_additive_def)
+qed
+
+definition space :: "'a measure \<Rightarrow> 'a set" where
+  "space M = fst (Rep_measure M)"
+
+definition sets :: "'a measure \<Rightarrow> 'a set set" where
+  "sets M = fst (snd (Rep_measure M))"
+
+definition emeasure :: "'a measure \<Rightarrow> 'a set \<Rightarrow> ennreal" where
+  "emeasure M = snd (snd (Rep_measure M))"
+
+definition measure :: "'a measure \<Rightarrow> 'a set \<Rightarrow> real" where
+  "measure M A = enn2real (emeasure M A)"
+
+declare [[coercion sets]]
+
+declare [[coercion measure]]
+
+declare [[coercion emeasure]]
+
+lemma measure_space: "measure_space (space M) (sets M) (emeasure M)"
+  by (cases M) (auto simp: space_def sets_def emeasure_def Abs_measure_inverse)
+
+interpretation sets: sigma_algebra "space M" "sets M" for M :: "'a measure"
+  using measure_space[of M] by (auto simp: measure_space_def)
+
+definition measure_of :: "'a set \<Rightarrow> 'a set set \<Rightarrow> ('a set \<Rightarrow> ennreal) \<Rightarrow> 'a measure" where
+  "measure_of \<Omega> A \<mu> = Abs_measure (\<Omega>, if A \<subseteq> Pow \<Omega> then sigma_sets \<Omega> A else {{}, \<Omega>},
+    \<lambda>a. if a \<in> sigma_sets \<Omega> A \<and> measure_space \<Omega> (sigma_sets \<Omega> A) \<mu> then \<mu> a else 0)"
+
+abbreviation "sigma \<Omega> A \<equiv> measure_of \<Omega> A (\<lambda>x. 0)"
+
+lemma measure_space_0: "A \<subseteq> Pow \<Omega> \<Longrightarrow> measure_space \<Omega> (sigma_sets \<Omega> A) (\<lambda>x. 0)"
+  unfolding measure_space_def
+  by (auto intro!: sigma_algebra_sigma_sets simp: positive_def countably_additive_def)
+
+lemma sigma_algebra_trivial: "sigma_algebra \<Omega> {{}, \<Omega>}"
+by unfold_locales(fastforce intro: exI[where x="{{}}"] exI[where x="{\<Omega>}"])+
+
+lemma measure_space_0': "measure_space \<Omega> {{}, \<Omega>} (\<lambda>x. 0)"
+by(simp add: measure_space_def positive_def countably_additive_def sigma_algebra_trivial)
+
+lemma measure_space_closed:
+  assumes "measure_space \<Omega> M \<mu>"
+  shows "M \<subseteq> Pow \<Omega>"
+proof -
+  interpret sigma_algebra \<Omega> M using assms by(simp add: measure_space_def)
+  show ?thesis by(rule space_closed)
+qed
+
+lemma (in ring_of_sets) positive_cong_eq:
+  "(\<And>a. a \<in> M \<Longrightarrow> \<mu>' a = \<mu> a) \<Longrightarrow> positive M \<mu>' = positive M \<mu>"
+  by (auto simp add: positive_def)
+
+lemma (in sigma_algebra) countably_additive_eq:
+  "(\<And>a. a \<in> M \<Longrightarrow> \<mu>' a = \<mu> a) \<Longrightarrow> countably_additive M \<mu>' = countably_additive M \<mu>"
+  unfolding countably_additive_def
+  by (intro arg_cong[where f=All] ext) (auto simp add: countably_additive_def subset_eq)
+
+lemma measure_space_eq:
+  assumes closed: "A \<subseteq> Pow \<Omega>" and eq: "\<And>a. a \<in> sigma_sets \<Omega> A \<Longrightarrow> \<mu> a = \<mu>' a"
+  shows "measure_space \<Omega> (sigma_sets \<Omega> A) \<mu> = measure_space \<Omega> (sigma_sets \<Omega> A) \<mu>'"
+proof -
+  interpret sigma_algebra \<Omega> "sigma_sets \<Omega> A" using closed by (rule sigma_algebra_sigma_sets)
+  from positive_cong_eq[OF eq, of "\<lambda>i. i"] countably_additive_eq[OF eq, of "\<lambda>i. i"] show ?thesis
+    by (auto simp: measure_space_def)
+qed
+
+lemma measure_of_eq:
+  assumes closed: "A \<subseteq> Pow \<Omega>" and eq: "(\<And>a. a \<in> sigma_sets \<Omega> A \<Longrightarrow> \<mu> a = \<mu>' a)"
+  shows "measure_of \<Omega> A \<mu> = measure_of \<Omega> A \<mu>'"
+proof -
+  have "measure_space \<Omega> (sigma_sets \<Omega> A) \<mu> = measure_space \<Omega> (sigma_sets \<Omega> A) \<mu>'"
+    using assms by (rule measure_space_eq)
+  with eq show ?thesis
+    by (auto simp add: measure_of_def intro!: arg_cong[where f=Abs_measure])
+qed
+
+lemma
+  shows space_measure_of_conv: "space (measure_of \<Omega> A \<mu>) = \<Omega>" (is ?space)
+  and sets_measure_of_conv:
+  "sets (measure_of \<Omega> A \<mu>) = (if A \<subseteq> Pow \<Omega> then sigma_sets \<Omega> A else {{}, \<Omega>})" (is ?sets)
+  and emeasure_measure_of_conv:
+  "emeasure (measure_of \<Omega> A \<mu>) =
+  (\<lambda>B. if B \<in> sigma_sets \<Omega> A \<and> measure_space \<Omega> (sigma_sets \<Omega> A) \<mu> then \<mu> B else 0)" (is ?emeasure)
+proof -
+  have "?space \<and> ?sets \<and> ?emeasure"
+  proof(cases "measure_space \<Omega> (sigma_sets \<Omega> A) \<mu>")
+    case True
+    from measure_space_closed[OF this] sigma_sets_superset_generator[of A \<Omega>]
+    have "A \<subseteq> Pow \<Omega>" by simp
+    hence "measure_space \<Omega> (sigma_sets \<Omega> A) \<mu> = measure_space \<Omega> (sigma_sets \<Omega> A)
+      (\<lambda>a. if a \<in> sigma_sets \<Omega> A then \<mu> a else 0)"
+      by(rule measure_space_eq) auto
+    with True \<open>A \<subseteq> Pow \<Omega>\<close> show ?thesis
+      by(simp add: measure_of_def space_def sets_def emeasure_def Abs_measure_inverse)
+  next
+    case False thus ?thesis
+      by(cases "A \<subseteq> Pow \<Omega>")(simp_all add: Abs_measure_inverse measure_of_def sets_def space_def emeasure_def measure_space_0 measure_space_0')
+  qed
+  thus ?space ?sets ?emeasure by simp_all
+qed
+
+lemma [simp]:
+  assumes A: "A \<subseteq> Pow \<Omega>"
+  shows sets_measure_of: "sets (measure_of \<Omega> A \<mu>) = sigma_sets \<Omega> A"
+    and space_measure_of: "space (measure_of \<Omega> A \<mu>) = \<Omega>"
+using assms
+by(simp_all add: sets_measure_of_conv space_measure_of_conv)
+
+lemma (in sigma_algebra) sets_measure_of_eq[simp]: "sets (measure_of \<Omega> M \<mu>) = M"
+  using space_closed by (auto intro!: sigma_sets_eq)
+
+lemma (in sigma_algebra) space_measure_of_eq[simp]: "space (measure_of \<Omega> M \<mu>) = \<Omega>"
+  by (rule space_measure_of_conv)
+
+lemma measure_of_subset: "M \<subseteq> Pow \<Omega> \<Longrightarrow> M' \<subseteq> M \<Longrightarrow> sets (measure_of \<Omega> M' \<mu>) \<subseteq> sets (measure_of \<Omega> M \<mu>')"
+  by (auto intro!: sigma_sets_subseteq)
+
+lemma emeasure_sigma: "emeasure (sigma \<Omega> A) = (\<lambda>x. 0)"
+  unfolding measure_of_def emeasure_def
+  by (subst Abs_measure_inverse)
+     (auto simp: measure_space_def positive_def countably_additive_def
+           intro!: sigma_algebra_sigma_sets sigma_algebra_trivial)
+
+lemma sigma_sets_mono'':
+  assumes "A \<in> sigma_sets C D"
+  assumes "B \<subseteq> D"
+  assumes "D \<subseteq> Pow C"
+  shows "sigma_sets A B \<subseteq> sigma_sets C D"
+proof
+  fix x assume "x \<in> sigma_sets A B"
+  thus "x \<in> sigma_sets C D"
+  proof induct
+    case (Basic a) with assms have "a \<in> D" by auto
+    thus ?case ..
+  next
+    case Empty show ?case by (rule sigma_sets.Empty)
+  next
+    from assms have "A \<in> sets (sigma C D)" by (subst sets_measure_of[OF \<open>D \<subseteq> Pow C\<close>])
+    moreover case (Compl a) hence "a \<in> sets (sigma C D)" by (subst sets_measure_of[OF \<open>D \<subseteq> Pow C\<close>])
+    ultimately have "A - a \<in> sets (sigma C D)" ..
+    thus ?case by (subst (asm) sets_measure_of[OF \<open>D \<subseteq> Pow C\<close>])
+  next
+    case (Union a)
+    thus ?case by (intro sigma_sets.Union)
+  qed
+qed
+
+lemma in_measure_of[intro, simp]: "M \<subseteq> Pow \<Omega> \<Longrightarrow> A \<in> M \<Longrightarrow> A \<in> sets (measure_of \<Omega> M \<mu>)"
+  by auto
+
+lemma space_empty_iff: "space N = {} \<longleftrightarrow> sets N = {{}}"
+  by (metis Pow_empty Sup_bot_conv(1) cSup_singleton empty_iff
+            sets.sigma_sets_eq sets.space_closed sigma_sets_top subset_singletonD)
+
+subsubsection \<open>Constructing simple @{typ "'a measure"}\<close>
+
+lemma emeasure_measure_of:
+  assumes M: "M = measure_of \<Omega> A \<mu>"
+  assumes ms: "A \<subseteq> Pow \<Omega>" "positive (sets M) \<mu>" "countably_additive (sets M) \<mu>"
+  assumes X: "X \<in> sets M"
+  shows "emeasure M X = \<mu> X"
+proof -
+  interpret sigma_algebra \<Omega> "sigma_sets \<Omega> A" by (rule sigma_algebra_sigma_sets) fact
+  have "measure_space \<Omega> (sigma_sets \<Omega> A) \<mu>"
+    using ms M by (simp add: measure_space_def sigma_algebra_sigma_sets)
+  thus ?thesis using X ms
+    by(simp add: M emeasure_measure_of_conv sets_measure_of_conv)
+qed
+
+lemma emeasure_measure_of_sigma:
+  assumes ms: "sigma_algebra \<Omega> M" "positive M \<mu>" "countably_additive M \<mu>"
+  assumes A: "A \<in> M"
+  shows "emeasure (measure_of \<Omega> M \<mu>) A = \<mu> A"
+proof -
+  interpret sigma_algebra \<Omega> M by fact
+  have "measure_space \<Omega> (sigma_sets \<Omega> M) \<mu>"
+    using ms sigma_sets_eq by (simp add: measure_space_def)
+  thus ?thesis by(simp add: emeasure_measure_of_conv A)
+qed
+
+lemma measure_cases[cases type: measure]:
+  obtains (measure) \<Omega> A \<mu> where "x = Abs_measure (\<Omega>, A, \<mu>)" "\<forall>a\<in>-A. \<mu> a = 0" "measure_space \<Omega> A \<mu>"
+  by atomize_elim (cases x, auto)
+
+lemma sets_le_imp_space_le: "sets A \<subseteq> sets B \<Longrightarrow> space A \<subseteq> space B"
+  by (auto dest: sets.sets_into_space)
+
+lemma sets_eq_imp_space_eq: "sets M = sets M' \<Longrightarrow> space M = space M'"
+  by (auto intro!: antisym sets_le_imp_space_le)
+
+lemma emeasure_notin_sets: "A \<notin> sets M \<Longrightarrow> emeasure M A = 0"
+  by (cases M) (auto simp: sets_def emeasure_def Abs_measure_inverse measure_space_def)
+
+lemma emeasure_neq_0_sets: "emeasure M A \<noteq> 0 \<Longrightarrow> A \<in> sets M"
+  using emeasure_notin_sets[of A M] by blast
+
+lemma measure_notin_sets: "A \<notin> sets M \<Longrightarrow> measure M A = 0"
+  by (simp add: measure_def emeasure_notin_sets zero_ennreal.rep_eq)
+
+lemma measure_eqI:
+  fixes M N :: "'a measure"
+  assumes "sets M = sets N" and eq: "\<And>A. A \<in> sets M \<Longrightarrow> emeasure M A = emeasure N A"
+  shows "M = N"
+proof (cases M N rule: measure_cases[case_product measure_cases])
+  case (measure_measure \<Omega> A \<mu> \<Omega>' A' \<mu>')
+  interpret M: sigma_algebra \<Omega> A using measure_measure by (auto simp: measure_space_def)
+  interpret N: sigma_algebra \<Omega>' A' using measure_measure by (auto simp: measure_space_def)
+  have "A = sets M" "A' = sets N"
+    using measure_measure by (simp_all add: sets_def Abs_measure_inverse)
+  with \<open>sets M = sets N\<close> have AA': "A = A'" by simp
+  moreover from M.top N.top M.space_closed N.space_closed AA' have "\<Omega> = \<Omega>'" by auto
+  moreover { fix B have "\<mu> B = \<mu>' B"
+    proof cases
+      assume "B \<in> A"
+      with eq \<open>A = sets M\<close> have "emeasure M B = emeasure N B" by simp
+      with measure_measure show "\<mu> B = \<mu>' B"
+        by (simp add: emeasure_def Abs_measure_inverse)
+    next
+      assume "B \<notin> A"
+      with \<open>A = sets M\<close> \<open>A' = sets N\<close> \<open>A = A'\<close> have "B \<notin> sets M" "B \<notin> sets N"
+        by auto
+      then have "emeasure M B = 0" "emeasure N B = 0"
+        by (simp_all add: emeasure_notin_sets)
+      with measure_measure show "\<mu> B = \<mu>' B"
+        by (simp add: emeasure_def Abs_measure_inverse)
+    qed }
+  then have "\<mu> = \<mu>'" by auto
+  ultimately show "M = N"
+    by (simp add: measure_measure)
+qed
+
+lemma sigma_eqI:
+  assumes [simp]: "M \<subseteq> Pow \<Omega>" "N \<subseteq> Pow \<Omega>" "sigma_sets \<Omega> M = sigma_sets \<Omega> N"
+  shows "sigma \<Omega> M = sigma \<Omega> N"
+  by (rule measure_eqI) (simp_all add: emeasure_sigma)
+
+subsubsection \<open>Measurable functions\<close>
+
+definition measurable :: "'a measure \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) set" (infixr "\<rightarrow>\<^sub>M" 60) where
+  "measurable A B = {f \<in> space A \<rightarrow> space B. \<forall>y \<in> sets B. f -` y \<inter> space A \<in> sets A}"
+
+lemma measurableI:
+  "(\<And>x. x \<in> space M \<Longrightarrow> f x \<in> space N) \<Longrightarrow> (\<And>A. A \<in> sets N \<Longrightarrow> f -` A \<inter> space M \<in> sets M) \<Longrightarrow>
+    f \<in> measurable M N"
+  by (auto simp: measurable_def)
+
+lemma measurable_space:
+  "f \<in> measurable M A \<Longrightarrow> x \<in> space M \<Longrightarrow> f x \<in> space A"
+   unfolding measurable_def by auto
+
+lemma measurable_sets:
+  "f \<in> measurable M A \<Longrightarrow> S \<in> sets A \<Longrightarrow> f -` S \<inter> space M \<in> sets M"
+   unfolding measurable_def by auto
+
+lemma measurable_sets_Collect:
+  assumes f: "f \<in> measurable M N" and P: "{x\<in>space N. P x} \<in> sets N" shows "{x\<in>space M. P (f x)} \<in> sets M"
+proof -
+  have "f -` {x \<in> space N. P x} \<inter> space M = {x\<in>space M. P (f x)}"
+    using measurable_space[OF f] by auto
+  with measurable_sets[OF f P] show ?thesis
+    by simp
+qed
+
+lemma measurable_sigma_sets:
+  assumes B: "sets N = sigma_sets \<Omega> A" "A \<subseteq> Pow \<Omega>"
+      and f: "f \<in> space M \<rightarrow> \<Omega>"
+      and ba: "\<And>y. y \<in> A \<Longrightarrow> (f -` y) \<inter> space M \<in> sets M"
+  shows "f \<in> measurable M N"
+proof -
+  interpret A: sigma_algebra \<Omega> "sigma_sets \<Omega> A" using B(2) by (rule sigma_algebra_sigma_sets)
+  from B sets.top[of N] A.top sets.space_closed[of N] A.space_closed have \<Omega>: "\<Omega> = space N" by force
+
+  { fix X assume "X \<in> sigma_sets \<Omega> A"
+    then have "f -` X \<inter> space M \<in> sets M \<and> X \<subseteq> \<Omega>"
+      proof induct
+        case (Basic a) then show ?case
+          by (auto simp add: ba) (metis B(2) subsetD PowD)
+      next
+        case (Compl a)
+        have [simp]: "f -` \<Omega> \<inter> space M = space M"
+          by (auto simp add: funcset_mem [OF f])
+        then show ?case
+          by (auto simp add: vimage_Diff Diff_Int_distrib2 sets.compl_sets Compl)
+      next
+        case (Union a)
+        then show ?case
+          by (simp add: vimage_UN, simp only: UN_extend_simps(4)) blast
+      qed auto }
+  with f show ?thesis
+    by (auto simp add: measurable_def B \<Omega>)
+qed
+
+lemma measurable_measure_of:
+  assumes B: "N \<subseteq> Pow \<Omega>"
+      and f: "f \<in> space M \<rightarrow> \<Omega>"
+      and ba: "\<And>y. y \<in> N \<Longrightarrow> (f -` y) \<inter> space M \<in> sets M"
+  shows "f \<in> measurable M (measure_of \<Omega> N \<mu>)"
+proof -
+  have "sets (measure_of \<Omega> N \<mu>) = sigma_sets \<Omega> N"
+    using B by (rule sets_measure_of)
+  from this assms show ?thesis by (rule measurable_sigma_sets)
+qed
+
+lemma measurable_iff_measure_of:
+  assumes "N \<subseteq> Pow \<Omega>" "f \<in> space M \<rightarrow> \<Omega>"
+  shows "f \<in> measurable M (measure_of \<Omega> N \<mu>) \<longleftrightarrow> (\<forall>A\<in>N. f -` A \<inter> space M \<in> sets M)"
+  by (metis assms in_measure_of measurable_measure_of assms measurable_sets)
+
+lemma measurable_cong_sets:
+  assumes sets: "sets M = sets M'" "sets N = sets N'"
+  shows "measurable M N = measurable M' N'"
+  using sets[THEN sets_eq_imp_space_eq] sets by (simp add: measurable_def)
+
+lemma measurable_cong:
+  assumes "\<And>w. w \<in> space M \<Longrightarrow> f w = g w"
+  shows "f \<in> measurable M M' \<longleftrightarrow> g \<in> measurable M M'"
+  unfolding measurable_def using assms
+  by (simp cong: vimage_inter_cong Pi_cong)
+
+lemma measurable_cong':
+  assumes "\<And>w. w \<in> space M =simp=> f w = g w"
+  shows "f \<in> measurable M M' \<longleftrightarrow> g \<in> measurable M M'"
+  unfolding measurable_def using assms
+  by (simp cong: vimage_inter_cong Pi_cong add: simp_implies_def)
+
+lemma measurable_cong_strong:
+  "M = N \<Longrightarrow> M' = N' \<Longrightarrow> (\<And>w. w \<in> space M \<Longrightarrow> f w = g w) \<Longrightarrow>
+    f \<in> measurable M M' \<longleftrightarrow> g \<in> measurable N N'"
+  by (metis measurable_cong)
+
+lemma measurable_compose:
+  assumes f: "f \<in> measurable M N" and g: "g \<in> measurable N L"
+  shows "(\<lambda>x. g (f x)) \<in> measurable M L"
+proof -
+  have "\<And>A. (\<lambda>x. g (f x)) -` A \<inter> space M = f -` (g -` A \<inter> space N) \<inter> space M"
+    using measurable_space[OF f] by auto
+  with measurable_space[OF f] measurable_space[OF g] show ?thesis
+    by (auto intro: measurable_sets[OF f] measurable_sets[OF g]
+             simp del: vimage_Int simp add: measurable_def)
+qed
+
+lemma measurable_comp:
+  "f \<in> measurable M N \<Longrightarrow> g \<in> measurable N L \<Longrightarrow> g \<circ> f \<in> measurable M L"
+  using measurable_compose[of f M N g L] by (simp add: comp_def)
+
+lemma measurable_const:
+  "c \<in> space M' \<Longrightarrow> (\<lambda>x. c) \<in> measurable M M'"
+  by (auto simp add: measurable_def)
+
+lemma measurable_ident: "id \<in> measurable M M"
+  by (auto simp add: measurable_def)
+
+lemma measurable_id: "(\<lambda>x. x) \<in> measurable M M"
+  by (simp add: measurable_def)
+
+lemma measurable_ident_sets:
+  assumes eq: "sets M = sets M'" shows "(\<lambda>x. x) \<in> measurable M M'"
+  using measurable_ident[of M]
+  unfolding id_def measurable_def eq sets_eq_imp_space_eq[OF eq] .
+
+lemma sets_Least:
+  assumes meas: "\<And>i::nat. {x\<in>space M. P i x} \<in> M"
+  shows "(\<lambda>x. LEAST j. P j x) -` A \<inter> space M \<in> sets M"
+proof -
+  { fix i have "(\<lambda>x. LEAST j. P j x) -` {i} \<inter> space M \<in> sets M"
+    proof cases
+      assume i: "(LEAST j. False) = i"
+      have "(\<lambda>x. LEAST j. P j x) -` {i} \<inter> space M =
+        {x\<in>space M. P i x} \<inter> (space M - (\<Union>j<i. {x\<in>space M. P j x})) \<union> (space M - (\<Union>i. {x\<in>space M. P i x}))"
+        by (simp add: set_eq_iff, safe)
+           (insert i, auto dest: Least_le intro: LeastI intro!: Least_equality)
+      with meas show ?thesis
+        by (auto intro!: sets.Int)
+    next
+      assume i: "(LEAST j. False) \<noteq> i"
+      then have "(\<lambda>x. LEAST j. P j x) -` {i} \<inter> space M =
+        {x\<in>space M. P i x} \<inter> (space M - (\<Union>j<i. {x\<in>space M. P j x}))"
+      proof (simp add: set_eq_iff, safe)
+        fix x assume neq: "(LEAST j. False) \<noteq> (LEAST j. P j x)"
+        have "\<exists>j. P j x"
+          by (rule ccontr) (insert neq, auto)
+        then show "P (LEAST j. P j x) x" by (rule LeastI_ex)
+      qed (auto dest: Least_le intro!: Least_equality)
+      with meas show ?thesis
+        by auto
+    qed }
+  then have "(\<Union>i\<in>A. (\<lambda>x. LEAST j. P j x) -` {i} \<inter> space M) \<in> sets M"
+    by (intro sets.countable_UN) auto
+  moreover have "(\<Union>i\<in>A. (\<lambda>x. LEAST j. P j x) -` {i} \<inter> space M) =
+    (\<lambda>x. LEAST j. P j x) -` A \<inter> space M" by auto
+  ultimately show ?thesis by auto
+qed
+
+lemma measurable_mono1:
+  "M' \<subseteq> Pow \<Omega> \<Longrightarrow> M \<subseteq> M' \<Longrightarrow>
+    measurable (measure_of \<Omega> M \<mu>) N \<subseteq> measurable (measure_of \<Omega> M' \<mu>') N"
+  using measure_of_subset[of M' \<Omega> M] by (auto simp add: measurable_def)
+
+subsubsection \<open>Counting space\<close>
+
+definition count_space :: "'a set \<Rightarrow> 'a measure" where
+  "count_space \<Omega> = measure_of \<Omega> (Pow \<Omega>) (\<lambda>A. if finite A then of_nat (card A) else \<infinity>)"
+
+lemma
+  shows space_count_space[simp]: "space (count_space \<Omega>) = \<Omega>"
+    and sets_count_space[simp]: "sets (count_space \<Omega>) = Pow \<Omega>"
+  using sigma_sets_into_sp[of "Pow \<Omega>" \<Omega>]
+  by (auto simp: count_space_def)
+
+lemma measurable_count_space_eq1[simp]:
+  "f \<in> measurable (count_space A) M \<longleftrightarrow> f \<in> A \<rightarrow> space M"
+ unfolding measurable_def by simp
+
+lemma measurable_compose_countable':
+  assumes f: "\<And>i. i \<in> I \<Longrightarrow> (\<lambda>x. f i x) \<in> measurable M N"
+  and g: "g \<in> measurable M (count_space I)" and I: "countable I"
+  shows "(\<lambda>x. f (g x) x) \<in> measurable M N"
+  unfolding measurable_def
+proof safe
+  fix x assume "x \<in> space M" then show "f (g x) x \<in> space N"
+    using measurable_space[OF f] g[THEN measurable_space] by auto
+next
+  fix A assume A: "A \<in> sets N"
+  have "(\<lambda>x. f (g x) x) -` A \<inter> space M = (\<Union>i\<in>I. (g -` {i} \<inter> space M) \<inter> (f i -` A \<inter> space M))"
+    using measurable_space[OF g] by auto
+  also have "\<dots> \<in> sets M"
+    using f[THEN measurable_sets, OF _ A] g[THEN measurable_sets]
+    by (auto intro!: sets.countable_UN' I intro: sets.Int[OF measurable_sets measurable_sets])
+  finally show "(\<lambda>x. f (g x) x) -` A \<inter> space M \<in> sets M" .
+qed
+
+lemma measurable_count_space_eq_countable:
+  assumes "countable A"
+  shows "f \<in> measurable M (count_space A) \<longleftrightarrow> (f \<in> space M \<rightarrow> A \<and> (\<forall>a\<in>A. f -` {a} \<inter> space M \<in> sets M))"
+proof -
+  { fix X assume "X \<subseteq> A" "f \<in> space M \<rightarrow> A"
+    with \<open>countable A\<close> have "f -` X \<inter> space M = (\<Union>a\<in>X. f -` {a} \<inter> space M)" "countable X"
+      by (auto dest: countable_subset)
+    moreover assume "\<forall>a\<in>A. f -` {a} \<inter> space M \<in> sets M"
+    ultimately have "f -` X \<inter> space M \<in> sets M"
+      using \<open>X \<subseteq> A\<close> by (auto intro!: sets.countable_UN' simp del: UN_simps) }
+  then show ?thesis
+    unfolding measurable_def by auto
+qed
+
+lemma measurable_count_space_eq2:
+  "finite A \<Longrightarrow> f \<in> measurable M (count_space A) \<longleftrightarrow> (f \<in> space M \<rightarrow> A \<and> (\<forall>a\<in>A. f -` {a} \<inter> space M \<in> sets M))"
+  by (intro measurable_count_space_eq_countable countable_finite)
+
+lemma measurable_count_space_eq2_countable:
+  fixes f :: "'a => 'c::countable"
+  shows "f \<in> measurable M (count_space A) \<longleftrightarrow> (f \<in> space M \<rightarrow> A \<and> (\<forall>a\<in>A. f -` {a} \<inter> space M \<in> sets M))"
+  by (intro measurable_count_space_eq_countable countableI_type)
+
+lemma measurable_compose_countable:
+  assumes f: "\<And>i::'i::countable. (\<lambda>x. f i x) \<in> measurable M N" and g: "g \<in> measurable M (count_space UNIV)"
+  shows "(\<lambda>x. f (g x) x) \<in> measurable M N"
+  by (rule measurable_compose_countable'[OF assms]) auto
+
+lemma measurable_count_space_const:
+  "(\<lambda>x. c) \<in> measurable M (count_space UNIV)"
+  by (simp add: measurable_const)
+
+lemma measurable_count_space:
+  "f \<in> measurable (count_space A) (count_space UNIV)"
+  by simp
+
+lemma measurable_compose_rev:
+  assumes f: "f \<in> measurable L N" and g: "g \<in> measurable M L"
+  shows "(\<lambda>x. f (g x)) \<in> measurable M N"
+  using measurable_compose[OF g f] .
+
+lemma measurable_empty_iff:
+  "space N = {} \<Longrightarrow> f \<in> measurable M N \<longleftrightarrow> space M = {}"
+  by (auto simp add: measurable_def Pi_iff)
+
+subsubsection \<open>Extend measure\<close>
+
+definition "extend_measure \<Omega> I G \<mu> =
+  (if (\<exists>\<mu>'. (\<forall>i\<in>I. \<mu>' (G i) = \<mu> i) \<and> measure_space \<Omega> (sigma_sets \<Omega> (G`I)) \<mu>') \<and> \<not> (\<forall>i\<in>I. \<mu> i = 0)
+      then measure_of \<Omega> (G`I) (SOME \<mu>'. (\<forall>i\<in>I. \<mu>' (G i) = \<mu> i) \<and> measure_space \<Omega> (sigma_sets \<Omega> (G`I)) \<mu>')
+      else measure_of \<Omega> (G`I) (\<lambda>_. 0))"
+
+lemma space_extend_measure: "G ` I \<subseteq> Pow \<Omega> \<Longrightarrow> space (extend_measure \<Omega> I G \<mu>) = \<Omega>"
+  unfolding extend_measure_def by simp
+
+lemma sets_extend_measure: "G ` I \<subseteq> Pow \<Omega> \<Longrightarrow> sets (extend_measure \<Omega> I G \<mu>) = sigma_sets \<Omega> (G`I)"
+  unfolding extend_measure_def by simp
+
+lemma emeasure_extend_measure:
+  assumes M: "M = extend_measure \<Omega> I G \<mu>"
+    and eq: "\<And>i. i \<in> I \<Longrightarrow> \<mu>' (G i) = \<mu> i"
+    and ms: "G ` I \<subseteq> Pow \<Omega>" "positive (sets M) \<mu>'" "countably_additive (sets M) \<mu>'"
+    and "i \<in> I"
+  shows "emeasure M (G i) = \<mu> i"
+proof cases
+  assume *: "(\<forall>i\<in>I. \<mu> i = 0)"
+  with M have M_eq: "M = measure_of \<Omega> (G`I) (\<lambda>_. 0)"
+   by (simp add: extend_measure_def)
+  from measure_space_0[OF ms(1)] ms \<open>i\<in>I\<close>
+  have "emeasure M (G i) = 0"
+    by (intro emeasure_measure_of[OF M_eq]) (auto simp add: M measure_space_def sets_extend_measure)
+  with \<open>i\<in>I\<close> * show ?thesis
+    by simp
+next
+  define P where "P \<mu>' \<longleftrightarrow> (\<forall>i\<in>I. \<mu>' (G i) = \<mu> i) \<and> measure_space \<Omega> (sigma_sets \<Omega> (G`I)) \<mu>'" for \<mu>'
+  assume "\<not> (\<forall>i\<in>I. \<mu> i = 0)"
+  moreover
+  have "measure_space (space M) (sets M) \<mu>'"
+    using ms unfolding measure_space_def by auto standard
+  with ms eq have "\<exists>\<mu>'. P \<mu>'"
+    unfolding P_def
+    by (intro exI[of _ \<mu>']) (auto simp add: M space_extend_measure sets_extend_measure)
+  ultimately have M_eq: "M = measure_of \<Omega> (G`I) (Eps P)"
+    by (simp add: M extend_measure_def P_def[symmetric])
+
+  from \<open>\<exists>\<mu>'. P \<mu>'\<close> have P: "P (Eps P)" by (rule someI_ex)
+  show "emeasure M (G i) = \<mu> i"
+  proof (subst emeasure_measure_of[OF M_eq])
+    have sets_M: "sets M = sigma_sets \<Omega> (G`I)"
+      using M_eq ms by (auto simp: sets_extend_measure)
+    then show "G i \<in> sets M" using \<open>i \<in> I\<close> by auto
+    show "positive (sets M) (Eps P)" "countably_additive (sets M) (Eps P)" "Eps P (G i) = \<mu> i"
+      using P \<open>i\<in>I\<close> by (auto simp add: sets_M measure_space_def P_def)
+  qed fact
+qed
+
+lemma emeasure_extend_measure_Pair:
+  assumes M: "M = extend_measure \<Omega> {(i, j). I i j} (\<lambda>(i, j). G i j) (\<lambda>(i, j). \<mu> i j)"
+    and eq: "\<And>i j. I i j \<Longrightarrow> \<mu>' (G i j) = \<mu> i j"
+    and ms: "\<And>i j. I i j \<Longrightarrow> G i j \<in> Pow \<Omega>" "positive (sets M) \<mu>'" "countably_additive (sets M) \<mu>'"
+    and "I i j"
+  shows "emeasure M (G i j) = \<mu> i j"
+  using emeasure_extend_measure[OF M _ _ ms(2,3), of "(i,j)"] eq ms(1) \<open>I i j\<close>
+  by (auto simp: subset_eq)
+
+subsection \<open>The smallest $\sigma$-algebra regarding a function\<close>
+
+definition
+  "vimage_algebra X f M = sigma X {f -` A \<inter> X | A. A \<in> sets M}"
+
+lemma space_vimage_algebra[simp]: "space (vimage_algebra X f M) = X"
+  unfolding vimage_algebra_def by (rule space_measure_of) auto
+
+lemma sets_vimage_algebra: "sets (vimage_algebra X f M) = sigma_sets X {f -` A \<inter> X | A. A \<in> sets M}"
+  unfolding vimage_algebra_def by (rule sets_measure_of) auto
+
+lemma sets_vimage_algebra2:
+  "f \<in> X \<rightarrow> space M \<Longrightarrow> sets (vimage_algebra X f M) = {f -` A \<inter> X | A. A \<in> sets M}"
+  using sigma_sets_vimage_commute[of f X "space M" "sets M"]
+  unfolding sets_vimage_algebra sets.sigma_sets_eq by simp
+
+lemma sets_vimage_algebra_cong: "sets M = sets N \<Longrightarrow> sets (vimage_algebra X f M) = sets (vimage_algebra X f N)"
+  by (simp add: sets_vimage_algebra)
+
+lemma vimage_algebra_cong:
+  assumes "X = Y"
+  assumes "\<And>x. x \<in> Y \<Longrightarrow> f x = g x"
+  assumes "sets M = sets N"
+  shows "vimage_algebra X f M = vimage_algebra Y g N"
+  by (auto simp: vimage_algebra_def assms intro!: arg_cong2[where f=sigma])
+
+lemma in_vimage_algebra: "A \<in> sets M \<Longrightarrow> f -` A \<inter> X \<in> sets (vimage_algebra X f M)"
+  by (auto simp: vimage_algebra_def)
+
+lemma sets_image_in_sets:
+  assumes N: "space N = X"
+  assumes f: "f \<in> measurable N M"
+  shows "sets (vimage_algebra X f M) \<subseteq> sets N"
+  unfolding sets_vimage_algebra N[symmetric]
+  by (rule sets.sigma_sets_subset) (auto intro!: measurable_sets f)
+
+lemma measurable_vimage_algebra1: "f \<in> X \<rightarrow> space M \<Longrightarrow> f \<in> measurable (vimage_algebra X f M) M"
+  unfolding measurable_def by (auto intro: in_vimage_algebra)
+
+lemma measurable_vimage_algebra2:
+  assumes g: "g \<in> space N \<rightarrow> X" and f: "(\<lambda>x. f (g x)) \<in> measurable N M"
+  shows "g \<in> measurable N (vimage_algebra X f M)"
+  unfolding vimage_algebra_def
+proof (rule measurable_measure_of)
+  fix A assume "A \<in> {f -` A \<inter> X | A. A \<in> sets M}"
+  then obtain Y where Y: "Y \<in> sets M" and A: "A = f -` Y \<inter> X"
+    by auto
+  then have "g -` A \<inter> space N = (\<lambda>x. f (g x)) -` Y \<inter> space N"
+    using g by auto
+  also have "\<dots> \<in> sets N"
+    using f Y by (rule measurable_sets)
+  finally show "g -` A \<inter> space N \<in> sets N" .
+qed (insert g, auto)
+
+lemma vimage_algebra_sigma:
+  assumes X: "X \<subseteq> Pow \<Omega>'" and f: "f \<in> \<Omega> \<rightarrow> \<Omega>'"
+  shows "vimage_algebra \<Omega> f (sigma \<Omega>' X) = sigma \<Omega> {f -` A \<inter> \<Omega> | A. A \<in> X }" (is "?V = ?S")
+proof (rule measure_eqI)
+  have \<Omega>: "{f -` A \<inter> \<Omega> |A. A \<in> X} \<subseteq> Pow \<Omega>" by auto
+  show "sets ?V = sets ?S"
+    using sigma_sets_vimage_commute[OF f, of X]
+    by (simp add: space_measure_of_conv f sets_vimage_algebra2 \<Omega> X)
+qed (simp add: vimage_algebra_def emeasure_sigma)
+
+lemma vimage_algebra_vimage_algebra_eq:
+  assumes *: "f \<in> X \<rightarrow> Y" "g \<in> Y \<rightarrow> space M"
+  shows "vimage_algebra X f (vimage_algebra Y g M) = vimage_algebra X (\<lambda>x. g (f x)) M"
+    (is "?VV = ?V")
+proof (rule measure_eqI)
+  have "(\<lambda>x. g (f x)) \<in> X \<rightarrow> space M" "\<And>A. A \<inter> f -` Y \<inter> X = A \<inter> X"
+    using * by auto
+  with * show "sets ?VV = sets ?V"
+    by (simp add: sets_vimage_algebra2 ex_simps[symmetric] vimage_comp comp_def del: ex_simps)
+qed (simp add: vimage_algebra_def emeasure_sigma)
+
+subsubsection \<open>Restricted Space Sigma Algebra\<close>
+
+definition restrict_space where
+  "restrict_space M \<Omega> = measure_of (\<Omega> \<inter> space M) ((op \<inter> \<Omega>) ` sets M) (emeasure M)"
+
+lemma space_restrict_space: "space (restrict_space M \<Omega>) = \<Omega> \<inter> space M"
+  using sets.sets_into_space unfolding restrict_space_def by (subst space_measure_of) auto
+
+lemma space_restrict_space2: "\<Omega> \<in> sets M \<Longrightarrow> space (restrict_space M \<Omega>) = \<Omega>"
+  by (simp add: space_restrict_space sets.sets_into_space)
+
+lemma sets_restrict_space: "sets (restrict_space M \<Omega>) = (op \<inter> \<Omega>) ` sets M"
+  unfolding restrict_space_def
+proof (subst sets_measure_of)
+  show "op \<inter> \<Omega> ` sets M \<subseteq> Pow (\<Omega> \<inter> space M)"
+    by (auto dest: sets.sets_into_space)
+  have "sigma_sets (\<Omega> \<inter> space M) {((\<lambda>x. x) -` X) \<inter> (\<Omega> \<inter> space M) | X. X \<in> sets M} =
+    (\<lambda>X. X \<inter> (\<Omega> \<inter> space M)) ` sets M"
+    by (subst sigma_sets_vimage_commute[symmetric, where \<Omega>' = "space M"])
+       (auto simp add: sets.sigma_sets_eq)
+  moreover have "{((\<lambda>x. x) -` X) \<inter> (\<Omega> \<inter> space M) | X. X \<in> sets M} = (\<lambda>X. X \<inter> (\<Omega> \<inter> space M)) `  sets M"
+    by auto
+  moreover have "(\<lambda>X. X \<inter> (\<Omega> \<inter> space M)) `  sets M = (op \<inter> \<Omega>) ` sets M"
+    by (intro image_cong) (auto dest: sets.sets_into_space)
+  ultimately show "sigma_sets (\<Omega> \<inter> space M) (op \<inter> \<Omega> ` sets M) = op \<inter> \<Omega> ` sets M"
+    by simp
+qed
+
+lemma restrict_space_sets_cong:
+  "A = B \<Longrightarrow> sets M = sets N \<Longrightarrow> sets (restrict_space M A) = sets (restrict_space N B)"
+  by (auto simp: sets_restrict_space)
+
+lemma sets_restrict_space_count_space :
+  "sets (restrict_space (count_space A) B) = sets (count_space (A \<inter> B))"
+by(auto simp add: sets_restrict_space)
+
+lemma sets_restrict_UNIV[simp]: "sets (restrict_space M UNIV) = sets M"
+  by (auto simp add: sets_restrict_space)
+
+lemma sets_restrict_restrict_space:
+  "sets (restrict_space (restrict_space M A) B) = sets (restrict_space M (A \<inter> B))"
+  unfolding sets_restrict_space image_comp by (intro image_cong) auto
+
+lemma sets_restrict_space_iff:
+  "\<Omega> \<inter> space M \<in> sets M \<Longrightarrow> A \<in> sets (restrict_space M \<Omega>) \<longleftrightarrow> (A \<subseteq> \<Omega> \<and> A \<in> sets M)"
+proof (subst sets_restrict_space, safe)
+  fix A assume "\<Omega> \<inter> space M \<in> sets M" and A: "A \<in> sets M"
+  then have "(\<Omega> \<inter> space M) \<inter> A \<in> sets M"
+    by rule
+  also have "(\<Omega> \<inter> space M) \<inter> A = \<Omega> \<inter> A"
+    using sets.sets_into_space[OF A] by auto
+  finally show "\<Omega> \<inter> A \<in> sets M"
+    by auto
+qed auto
+
+lemma sets_restrict_space_cong: "sets M = sets N \<Longrightarrow> sets (restrict_space M \<Omega>) = sets (restrict_space N \<Omega>)"
+  by (simp add: sets_restrict_space)
+
+lemma restrict_space_eq_vimage_algebra:
+  "\<Omega> \<subseteq> space M \<Longrightarrow> sets (restrict_space M \<Omega>) = sets (vimage_algebra \<Omega> (\<lambda>x. x) M)"
+  unfolding restrict_space_def
+  apply (subst sets_measure_of)
+  apply (auto simp add: image_subset_iff dest: sets.sets_into_space) []
+  apply (auto simp add: sets_vimage_algebra intro!: arg_cong2[where f=sigma_sets])
+  done
+
+lemma sets_Collect_restrict_space_iff:
+  assumes "S \<in> sets M"
+  shows "{x\<in>space (restrict_space M S). P x} \<in> sets (restrict_space M S) \<longleftrightarrow> {x\<in>space M. x \<in> S \<and> P x} \<in> sets M"
+proof -
+  have "{x\<in>S. P x} = {x\<in>space M. x \<in> S \<and> P x}"
+    using sets.sets_into_space[OF assms] by auto
+  then show ?thesis
+    by (subst sets_restrict_space_iff) (auto simp add: space_restrict_space assms)
+qed
+
+lemma measurable_restrict_space1:
+  assumes f: "f \<in> measurable M N"
+  shows "f \<in> measurable (restrict_space M \<Omega>) N"
+  unfolding measurable_def
+proof (intro CollectI conjI ballI)
+  show sp: "f \<in> space (restrict_space M \<Omega>) \<rightarrow> space N"
+    using measurable_space[OF f] by (auto simp: space_restrict_space)
+
+  fix A assume "A \<in> sets N"
+  have "f -` A \<inter> space (restrict_space M \<Omega>) = (f -` A \<inter> space M) \<inter> (\<Omega> \<inter> space M)"
+    by (auto simp: space_restrict_space)
+  also have "\<dots> \<in> sets (restrict_space M \<Omega>)"
+    unfolding sets_restrict_space
+    using measurable_sets[OF f \<open>A \<in> sets N\<close>] by blast
+  finally show "f -` A \<inter> space (restrict_space M \<Omega>) \<in> sets (restrict_space M \<Omega>)" .
+qed
+
+lemma measurable_restrict_space2_iff:
+  "f \<in> measurable M (restrict_space N \<Omega>) \<longleftrightarrow> (f \<in> measurable M N \<and> f \<in> space M \<rightarrow> \<Omega>)"
+proof -
+  have "\<And>A. f \<in> space M \<rightarrow> \<Omega> \<Longrightarrow> f -` \<Omega> \<inter> f -` A \<inter> space M = f -` A \<inter> space M"
+    by auto
+  then show ?thesis
+    by (auto simp: measurable_def space_restrict_space Pi_Int[symmetric] sets_restrict_space)
+qed
+
+lemma measurable_restrict_space2:
+  "f \<in> space M \<rightarrow> \<Omega> \<Longrightarrow> f \<in> measurable M N \<Longrightarrow> f \<in> measurable M (restrict_space N \<Omega>)"
+  by (simp add: measurable_restrict_space2_iff)
+
+lemma measurable_piecewise_restrict:
+  assumes I: "countable C"
+    and X: "\<And>\<Omega>. \<Omega> \<in> C \<Longrightarrow> \<Omega> \<inter> space M \<in> sets M" "space M \<subseteq> \<Union>C"
+    and f: "\<And>\<Omega>. \<Omega> \<in> C \<Longrightarrow> f \<in> measurable (restrict_space M \<Omega>) N"
+  shows "f \<in> measurable M N"
+proof (rule measurableI)
+  fix x assume "x \<in> space M"
+  with X obtain \<Omega> where "\<Omega> \<in> C" "x \<in> \<Omega>" "x \<in> space M" by auto
+  then show "f x \<in> space N"
+    by (auto simp: space_restrict_space intro: f measurable_space)
+next
+  fix A assume A: "A \<in> sets N"
+  have "f -` A \<inter> space M = (\<Union>\<Omega>\<in>C. (f -` A \<inter> (\<Omega> \<inter> space M)))"
+    using X by (auto simp: subset_eq)
+  also have "\<dots> \<in> sets M"
+    using measurable_sets[OF f A] X I
+    by (intro sets.countable_UN') (auto simp: sets_restrict_space_iff space_restrict_space)
+  finally show "f -` A \<inter> space M \<in> sets M" .
+qed
+
+lemma measurable_piecewise_restrict_iff:
+  "countable C \<Longrightarrow> (\<And>\<Omega>. \<Omega> \<in> C \<Longrightarrow> \<Omega> \<inter> space M \<in> sets M) \<Longrightarrow> space M \<subseteq> (\<Union>C) \<Longrightarrow>
+    f \<in> measurable M N \<longleftrightarrow> (\<forall>\<Omega>\<in>C. f \<in> measurable (restrict_space M \<Omega>) N)"
+  by (auto intro: measurable_piecewise_restrict measurable_restrict_space1)
+
+lemma measurable_If_restrict_space_iff:
+  "{x\<in>space M. P x} \<in> sets M \<Longrightarrow>
+    (\<lambda>x. if P x then f x else g x) \<in> measurable M N \<longleftrightarrow>
+    (f \<in> measurable (restrict_space M {x. P x}) N \<and> g \<in> measurable (restrict_space M {x. \<not> P x}) N)"
+  by (subst measurable_piecewise_restrict_iff[where C="{{x. P x}, {x. \<not> P x}}"])
+     (auto simp: Int_def sets.sets_Collect_neg space_restrict_space conj_commute[of _ "x \<in> space M" for x]
+           cong: measurable_cong')
+
+lemma measurable_If:
+  "f \<in> measurable M M' \<Longrightarrow> g \<in> measurable M M' \<Longrightarrow> {x\<in>space M. P x} \<in> sets M \<Longrightarrow>
+    (\<lambda>x. if P x then f x else g x) \<in> measurable M M'"
+  unfolding measurable_If_restrict_space_iff by (auto intro: measurable_restrict_space1)
+
+lemma measurable_If_set:
+  assumes measure: "f \<in> measurable M M'" "g \<in> measurable M M'"
+  assumes P: "A \<inter> space M \<in> sets M"
+  shows "(\<lambda>x. if x \<in> A then f x else g x) \<in> measurable M M'"
+proof (rule measurable_If[OF measure])
+  have "{x \<in> space M. x \<in> A} = A \<inter> space M" by auto
+  thus "{x \<in> space M. x \<in> A} \<in> sets M" using \<open>A \<inter> space M \<in> sets M\<close> by auto
+qed
+
+lemma measurable_restrict_space_iff:
+  "\<Omega> \<inter> space M \<in> sets M \<Longrightarrow> c \<in> space N \<Longrightarrow>
+    f \<in> measurable (restrict_space M \<Omega>) N \<longleftrightarrow> (\<lambda>x. if x \<in> \<Omega> then f x else c) \<in> measurable M N"
+  by (subst measurable_If_restrict_space_iff)
+     (simp_all add: Int_def conj_commute measurable_const)
+
+lemma restrict_space_singleton: "{x} \<in> sets M \<Longrightarrow> sets (restrict_space M {x}) = sets (count_space {x})"
+  using sets_restrict_space_iff[of "{x}" M]
+  by (auto simp add: sets_restrict_space_iff dest!: subset_singletonD)
+
+lemma measurable_restrict_countable:
+  assumes X[intro]: "countable X"
+  assumes sets[simp]: "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M"
+  assumes space[simp]: "\<And>x. x \<in> X \<Longrightarrow> f x \<in> space N"
+  assumes f: "f \<in> measurable (restrict_space M (- X)) N"
+  shows "f \<in> measurable M N"
+  using f sets.countable[OF sets X]
+  by (intro measurable_piecewise_restrict[where M=M and C="{- X} \<union> ((\<lambda>x. {x}) ` X)"])
+     (auto simp: Diff_Int_distrib2 Compl_eq_Diff_UNIV Int_insert_left sets.Diff restrict_space_singleton
+           simp del: sets_count_space  cong: measurable_cong_sets)
+
+lemma measurable_discrete_difference:
+  assumes f: "f \<in> measurable M N"
+  assumes X: "countable X" "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M" "\<And>x. x \<in> X \<Longrightarrow> g x \<in> space N"
+  assumes eq: "\<And>x. x \<in> space M \<Longrightarrow> x \<notin> X \<Longrightarrow> f x = g x"
+  shows "g \<in> measurable M N"
+  by (rule measurable_restrict_countable[OF X])
+     (auto simp: eq[symmetric] space_restrict_space cong: measurable_cong' intro: f measurable_restrict_space1)
+
+end