src/HOL/Hyperreal/Star.thy
changeset 20563 44eda2314aab
parent 20552 2c31dd358c21
child 20730 da903f59e9ba
--- a/src/HOL/Hyperreal/Star.thy	Sun Sep 17 16:44:51 2006 +0200
+++ b/src/HOL/Hyperreal/Star.thy	Mon Sep 18 07:48:07 2006 +0200
@@ -329,19 +329,19 @@
      star_n_inverse star_n_less hypreal_of_nat_eq)
 
 lemma approx_FreeUltrafilterNat_iff: "star_n X @= star_n Y =
-      (\<forall>r>0. {n. norm (X n + - Y n) < r} : FreeUltrafilterNat)"
+      (\<forall>r>0. {n. norm (X n - Y n) < r} : FreeUltrafilterNat)"
 apply (subst approx_minus_iff)
 apply (rule mem_infmal_iff [THEN subst])
-apply (simp add: star_n_minus star_n_add)
+apply (simp add: star_n_diff)
 apply (simp add: Infinitesimal_FreeUltrafilterNat_iff)
 done
 
 lemma approx_FreeUltrafilterNat_iff2: "star_n X @= star_n Y =
-      (\<forall>m. {n. norm (X n + - Y n) <
+      (\<forall>m. {n. norm (X n - Y n) <
                   inverse(real(Suc m))} : FreeUltrafilterNat)"
 apply (subst approx_minus_iff)
 apply (rule mem_infmal_iff [THEN subst])
-apply (simp add: star_n_minus star_n_add)
+apply (simp add: star_n_diff)
 apply (simp add: Infinitesimal_FreeUltrafilterNat_iff2)
 done