src/HOL/Library/FinFun.thy
changeset 65050 4538153bcc5c
parent 65049 928156a95e1a
child 65051 f094e27e4902
--- a/src/HOL/Library/FinFun.thy	Sun Feb 26 11:38:33 2017 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1582 +0,0 @@
-(* Author: Andreas Lochbihler, Uni Karlsruhe *)
-
-section \<open>Almost everywhere constant functions\<close>
-
-theory FinFun
-imports Cardinality
-begin
-
-text \<open>
-  This theory defines functions which are constant except for finitely
-  many points (FinFun) and introduces a type finfin along with a
-  number of operators for them. The code generator is set up such that
-  such functions can be represented as data in the generated code and
-  all operators are executable.
-
-  For details, see Formalising FinFuns - Generating Code for Functions as Data by A. Lochbihler in TPHOLs 2009.
-\<close>
-
-
-subsection \<open>The \<open>map_default\<close> operation\<close>
-
-definition map_default :: "'b \<Rightarrow> ('a \<rightharpoonup> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
-where "map_default b f a \<equiv> case f a of None \<Rightarrow> b | Some b' \<Rightarrow> b'"
-
-lemma map_default_delete [simp]:
-  "map_default b (f(a := None)) = (map_default b f)(a := b)"
-by(simp add: map_default_def fun_eq_iff)
-
-lemma map_default_insert:
-  "map_default b (f(a \<mapsto> b')) = (map_default b f)(a := b')"
-by(simp add: map_default_def fun_eq_iff)
-
-lemma map_default_empty [simp]: "map_default b empty = (\<lambda>a. b)"
-by(simp add: fun_eq_iff map_default_def)
-
-lemma map_default_inject:
-  fixes g g' :: "'a \<rightharpoonup> 'b"
-  assumes infin_eq: "\<not> finite (UNIV :: 'a set) \<or> b = b'"
-  and fin: "finite (dom g)" and b: "b \<notin> ran g"
-  and fin': "finite (dom g')" and b': "b' \<notin> ran g'"
-  and eq': "map_default b g = map_default b' g'"
-  shows "b = b'" "g = g'"
-proof -
-  from infin_eq show bb': "b = b'"
-  proof
-    assume infin: "\<not> finite (UNIV :: 'a set)"
-    from fin fin' have "finite (dom g \<union> dom g')" by auto
-    with infin have "UNIV - (dom g \<union> dom g') \<noteq> {}" by(auto dest: finite_subset)
-    then obtain a where a: "a \<notin> dom g \<union> dom g'" by auto
-    hence "map_default b g a = b" "map_default b' g' a = b'" by(auto simp add: map_default_def)
-    with eq' show "b = b'" by simp
-  qed
-
-  show "g = g'"
-  proof
-    fix x
-    show "g x = g' x"
-    proof(cases "g x")
-      case None
-      hence "map_default b g x = b" by(simp add: map_default_def)
-      with bb' eq' have "map_default b' g' x = b'" by simp
-      with b' have "g' x = None" by(simp add: map_default_def ran_def split: option.split_asm)
-      with None show ?thesis by simp
-    next
-      case (Some c)
-      with b have cb: "c \<noteq> b" by(auto simp add: ran_def)
-      moreover from Some have "map_default b g x = c" by(simp add: map_default_def)
-      with eq' have "map_default b' g' x = c" by simp
-      ultimately have "g' x = Some c" using b' bb' by(auto simp add: map_default_def split: option.splits)
-      with Some show ?thesis by simp
-    qed
-  qed
-qed
-
-subsection \<open>The finfun type\<close>
-
-definition "finfun = {f::'a\<Rightarrow>'b. \<exists>b. finite {a. f a \<noteq> b}}"
-
-typedef ('a,'b) finfun  ("(_ \<Rightarrow>f /_)" [22, 21] 21) = "finfun :: ('a => 'b) set"
-  morphisms finfun_apply Abs_finfun
-proof -
-  have "\<exists>f. finite {x. f x \<noteq> undefined}"
-  proof
-    show "finite {x. (\<lambda>y. undefined) x \<noteq> undefined}" by auto
-  qed
-  then show ?thesis unfolding finfun_def by auto
-qed
-
-type_notation finfun ("(_ \<Rightarrow>f /_)" [22, 21] 21)
-
-setup_lifting type_definition_finfun
-
-lemma fun_upd_finfun: "y(a := b) \<in> finfun \<longleftrightarrow> y \<in> finfun"
-proof -
-  { fix b'
-    have "finite {a'. (y(a := b)) a' \<noteq> b'} = finite {a'. y a' \<noteq> b'}"
-    proof(cases "b = b'")
-      case True
-      hence "{a'. (y(a := b)) a' \<noteq> b'} = {a'. y a' \<noteq> b'} - {a}" by auto
-      thus ?thesis by simp
-    next
-      case False
-      hence "{a'. (y(a := b)) a' \<noteq> b'} = insert a {a'. y a' \<noteq> b'}" by auto
-      thus ?thesis by simp
-    qed }
-  thus ?thesis unfolding finfun_def by blast
-qed
-
-lemma const_finfun: "(\<lambda>x. a) \<in> finfun"
-by(auto simp add: finfun_def)
-
-lemma finfun_left_compose:
-  assumes "y \<in> finfun"
-  shows "g \<circ> y \<in> finfun"
-proof -
-  from assms obtain b where "finite {a. y a \<noteq> b}"
-    unfolding finfun_def by blast
-  hence "finite {c. g (y c) \<noteq> g b}"
-  proof(induct "{a. y a \<noteq> b}" arbitrary: y)
-    case empty
-    hence "y = (\<lambda>a. b)" by(auto)
-    thus ?case by(simp)
-  next
-    case (insert x F)
-    note IH = \<open>\<And>y. F = {a. y a \<noteq> b} \<Longrightarrow> finite {c. g (y c) \<noteq> g b}\<close>
-    from \<open>insert x F = {a. y a \<noteq> b}\<close> \<open>x \<notin> F\<close>
-    have F: "F = {a. (y(x := b)) a \<noteq> b}" by(auto)
-    show ?case
-    proof(cases "g (y x) = g b")
-      case True
-      hence "{c. g ((y(x := b)) c) \<noteq> g b} = {c. g (y c) \<noteq> g b}" by auto
-      with IH[OF F] show ?thesis by simp
-    next
-      case False
-      hence "{c. g (y c) \<noteq> g b} = insert x {c. g ((y(x := b)) c) \<noteq> g b}" by auto
-      with IH[OF F] show ?thesis by(simp)
-    qed
-  qed
-  thus ?thesis unfolding finfun_def by auto
-qed
-
-lemma assumes "y \<in> finfun"
-  shows fst_finfun: "fst \<circ> y \<in> finfun"
-  and snd_finfun: "snd \<circ> y \<in> finfun"
-proof -
-  from assms obtain b c where bc: "finite {a. y a \<noteq> (b, c)}"
-    unfolding finfun_def by auto
-  have "{a. fst (y a) \<noteq> b} \<subseteq> {a. y a \<noteq> (b, c)}"
-    and "{a. snd (y a) \<noteq> c} \<subseteq> {a. y a \<noteq> (b, c)}" by auto
-  hence "finite {a. fst (y a) \<noteq> b}" 
-    and "finite {a. snd (y a) \<noteq> c}" using bc by(auto intro: finite_subset)
-  thus "fst \<circ> y \<in> finfun" "snd \<circ> y \<in> finfun"
-    unfolding finfun_def by auto
-qed
-
-lemma map_of_finfun: "map_of xs \<in> finfun"
-unfolding finfun_def
-by(induct xs)(auto simp add: Collect_neg_eq Collect_conj_eq Collect_imp_eq intro: finite_subset)
-
-lemma Diag_finfun: "(\<lambda>x. (f x, g x)) \<in> finfun \<longleftrightarrow> f \<in> finfun \<and> g \<in> finfun"
-by(auto intro: finite_subset simp add: Collect_neg_eq Collect_imp_eq Collect_conj_eq finfun_def)
-
-lemma finfun_right_compose:
-  assumes g: "g \<in> finfun" and inj: "inj f"
-  shows "g o f \<in> finfun"
-proof -
-  from g obtain b where b: "finite {a. g a \<noteq> b}" unfolding finfun_def by blast
-  moreover have "f ` {a. g (f a) \<noteq> b} \<subseteq> {a. g a \<noteq> b}" by auto
-  moreover from inj have "inj_on f {a.  g (f a) \<noteq> b}" by(rule subset_inj_on) blast
-  ultimately have "finite {a. g (f a) \<noteq> b}"
-    by(blast intro: finite_imageD[where f=f] finite_subset)
-  thus ?thesis unfolding finfun_def by auto
-qed
-
-lemma finfun_curry:
-  assumes fin: "f \<in> finfun"
-  shows "curry f \<in> finfun" "curry f a \<in> finfun"
-proof -
-  from fin obtain c where c: "finite {ab. f ab \<noteq> c}" unfolding finfun_def by blast
-  moreover have "{a. \<exists>b. f (a, b) \<noteq> c} = fst ` {ab. f ab \<noteq> c}" by(force)
-  hence "{a. curry f a \<noteq> (\<lambda>b. c)} = fst ` {ab. f ab \<noteq> c}"
-    by(auto simp add: curry_def fun_eq_iff)
-  ultimately have "finite {a. curry f a \<noteq> (\<lambda>b. c)}" by simp
-  thus "curry f \<in> finfun" unfolding finfun_def by blast
-  
-  have "snd ` {ab. f ab \<noteq> c} = {b. \<exists>a. f (a, b) \<noteq> c}" by(force)
-  hence "{b. f (a, b) \<noteq> c} \<subseteq> snd ` {ab. f ab \<noteq> c}" by auto
-  hence "finite {b. f (a, b) \<noteq> c}" by(rule finite_subset)(rule finite_imageI[OF c])
-  thus "curry f a \<in> finfun" unfolding finfun_def by auto
-qed
-
-bundle finfun
-begin
-
-lemmas [simp] =
-  fst_finfun snd_finfun Abs_finfun_inverse
-  finfun_apply_inverse Abs_finfun_inject finfun_apply_inject
-  Diag_finfun finfun_curry
-lemmas [iff] =
-  const_finfun fun_upd_finfun finfun_apply map_of_finfun
-lemmas [intro] =
-  finfun_left_compose fst_finfun snd_finfun
-
-end
-
-lemma Abs_finfun_inject_finite:
-  fixes x y :: "'a \<Rightarrow> 'b"
-  assumes fin: "finite (UNIV :: 'a set)"
-  shows "Abs_finfun x = Abs_finfun y \<longleftrightarrow> x = y"
-proof
-  assume "Abs_finfun x = Abs_finfun y"
-  moreover have "x \<in> finfun" "y \<in> finfun" unfolding finfun_def
-    by(auto intro: finite_subset[OF _ fin])
-  ultimately show "x = y" by(simp add: Abs_finfun_inject)
-qed simp
-
-lemma Abs_finfun_inject_finite_class:
-  fixes x y :: "('a :: finite) \<Rightarrow> 'b"
-  shows "Abs_finfun x = Abs_finfun y \<longleftrightarrow> x = y"
-using finite_UNIV
-by(simp add: Abs_finfun_inject_finite)
-
-lemma Abs_finfun_inj_finite:
-  assumes fin: "finite (UNIV :: 'a set)"
-  shows "inj (Abs_finfun :: ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow>f 'b)"
-proof(rule inj_onI)
-  fix x y :: "'a \<Rightarrow> 'b"
-  assume "Abs_finfun x = Abs_finfun y"
-  moreover have "x \<in> finfun" "y \<in> finfun" unfolding finfun_def
-    by(auto intro: finite_subset[OF _ fin])
-  ultimately show "x = y" by(simp add: Abs_finfun_inject)
-qed
-
-lemma Abs_finfun_inverse_finite:
-  fixes x :: "'a \<Rightarrow> 'b"
-  assumes fin: "finite (UNIV :: 'a set)"
-  shows "finfun_apply (Abs_finfun x) = x"
-  including finfun
-proof -
-  from fin have "x \<in> finfun"
-    by(auto simp add: finfun_def intro: finite_subset)
-  thus ?thesis by simp
-qed
-
-lemma Abs_finfun_inverse_finite_class:
-  fixes x :: "('a :: finite) \<Rightarrow> 'b"
-  shows "finfun_apply (Abs_finfun x) = x"
-using finite_UNIV by(simp add: Abs_finfun_inverse_finite)
-
-lemma finfun_eq_finite_UNIV: "finite (UNIV :: 'a set) \<Longrightarrow> (finfun :: ('a \<Rightarrow> 'b) set) = UNIV"
-unfolding finfun_def by(auto intro: finite_subset)
-
-lemma finfun_finite_UNIV_class: "finfun = (UNIV :: ('a :: finite \<Rightarrow> 'b) set)"
-by(simp add: finfun_eq_finite_UNIV)
-
-lemma map_default_in_finfun:
-  assumes fin: "finite (dom f)"
-  shows "map_default b f \<in> finfun"
-unfolding finfun_def
-proof(intro CollectI exI)
-  from fin show "finite {a. map_default b f a \<noteq> b}"
-    by(auto simp add: map_default_def dom_def Collect_conj_eq split: option.splits)
-qed
-
-lemma finfun_cases_map_default:
-  obtains b g where "f = Abs_finfun (map_default b g)" "finite (dom g)" "b \<notin> ran g"
-proof -
-  obtain y where f: "f = Abs_finfun y" and y: "y \<in> finfun" by(cases f)
-  from y obtain b where b: "finite {a. y a \<noteq> b}" unfolding finfun_def by auto
-  let ?g = "(\<lambda>a. if y a = b then None else Some (y a))"
-  have "map_default b ?g = y" by(simp add: fun_eq_iff map_default_def)
-  with f have "f = Abs_finfun (map_default b ?g)" by simp
-  moreover from b have "finite (dom ?g)" by(auto simp add: dom_def)
-  moreover have "b \<notin> ran ?g" by(auto simp add: ran_def)
-  ultimately show ?thesis by(rule that)
-qed
-
-
-subsection \<open>Kernel functions for type @{typ "'a \<Rightarrow>f 'b"}\<close>
-
-lift_definition finfun_const :: "'b \<Rightarrow> 'a \<Rightarrow>f 'b" ("K$/ _" [0] 1)
-is "\<lambda> b x. b" by (rule const_finfun)
-
-lift_definition finfun_update :: "'a \<Rightarrow>f 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow>f 'b" ("_'(_ $:= _')" [1000,0,0] 1000) is "fun_upd"
-by (simp add: fun_upd_finfun)
-
-lemma finfun_update_twist: "a \<noteq> a' \<Longrightarrow> f(a $:= b)(a' $:= b') = f(a' $:= b')(a $:= b)"
-by transfer (simp add: fun_upd_twist)
-
-lemma finfun_update_twice [simp]:
-  "f(a $:= b)(a $:= b') = f(a $:= b')"
-by transfer simp
-
-lemma finfun_update_const_same: "(K$ b)(a $:= b) = (K$ b)"
-by transfer (simp add: fun_eq_iff)
-
-subsection \<open>Code generator setup\<close>
-
-definition finfun_update_code :: "'a \<Rightarrow>f 'b \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow>f 'b"
-where [simp, code del]: "finfun_update_code = finfun_update"
-
-code_datatype finfun_const finfun_update_code
-
-lemma finfun_update_const_code [code]:
-  "(K$ b)(a $:= b') = (if b = b' then (K$ b) else finfun_update_code (K$ b) a b')"
-by(simp add: finfun_update_const_same)
-
-lemma finfun_update_update_code [code]:
-  "(finfun_update_code f a b)(a' $:= b') = (if a = a' then f(a $:= b') else finfun_update_code (f(a' $:= b')) a b)"
-by(simp add: finfun_update_twist)
-
-
-subsection \<open>Setup for quickcheck\<close>
-
-quickcheck_generator finfun constructors: finfun_update_code, "finfun_const :: 'b \<Rightarrow> 'a \<Rightarrow>f 'b"
-
-subsection \<open>\<open>finfun_update\<close> as instance of \<open>comp_fun_commute\<close>\<close>
-
-interpretation finfun_update: comp_fun_commute "\<lambda>a f. f(a :: 'a $:= b')"
-  including finfun
-proof
-  fix a a' :: 'a
-  show "(\<lambda>f. f(a $:= b')) \<circ> (\<lambda>f. f(a' $:= b')) = (\<lambda>f. f(a' $:= b')) \<circ> (\<lambda>f. f(a $:= b'))"
-  proof
-    fix b
-    have "(finfun_apply b)(a := b', a' := b') = (finfun_apply b)(a' := b', a := b')"
-      by(cases "a = a'")(auto simp add: fun_upd_twist)
-    then have "b(a $:= b')(a' $:= b') = b(a' $:= b')(a $:= b')"
-      by(auto simp add: finfun_update_def fun_upd_twist)
-    then show "((\<lambda>f. f(a $:= b')) \<circ> (\<lambda>f. f(a' $:= b'))) b = ((\<lambda>f. f(a' $:= b')) \<circ> (\<lambda>f. f(a $:= b'))) b"
-      by (simp add: fun_eq_iff)
-  qed
-qed
-
-lemma fold_finfun_update_finite_univ:
-  assumes fin: "finite (UNIV :: 'a set)"
-  shows "Finite_Set.fold (\<lambda>a f. f(a $:= b')) (K$ b) (UNIV :: 'a set) = (K$ b')"
-proof -
-  { fix A :: "'a set"
-    from fin have "finite A" by(auto intro: finite_subset)
-    hence "Finite_Set.fold (\<lambda>a f. f(a $:= b')) (K$ b) A = Abs_finfun (\<lambda>a. if a \<in> A then b' else b)"
-    proof(induct)
-      case (insert x F)
-      have "(\<lambda>a. if a = x then b' else (if a \<in> F then b' else b)) = (\<lambda>a. if a = x \<or> a \<in> F then b' else b)"
-        by(auto)
-      with insert show ?case
-        by(simp add: finfun_const_def fun_upd_def)(simp add: finfun_update_def Abs_finfun_inverse_finite[OF fin] fun_upd_def)
-    qed(simp add: finfun_const_def) }
-  thus ?thesis by(simp add: finfun_const_def)
-qed
-
-
-subsection \<open>Default value for FinFuns\<close>
-
-definition finfun_default_aux :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b"
-where [code del]: "finfun_default_aux f = (if finite (UNIV :: 'a set) then undefined else THE b. finite {a. f a \<noteq> b})"
-
-lemma finfun_default_aux_infinite:
-  fixes f :: "'a \<Rightarrow> 'b"
-  assumes infin: "\<not> finite (UNIV :: 'a set)"
-  and fin: "finite {a. f a \<noteq> b}"
-  shows "finfun_default_aux f = b"
-proof -
-  let ?B = "{a. f a \<noteq> b}"
-  from fin have "(THE b. finite {a. f a \<noteq> b}) = b"
-  proof(rule the_equality)
-    fix b'
-    assume "finite {a. f a \<noteq> b'}" (is "finite ?B'")
-    with infin fin have "UNIV - (?B' \<union> ?B) \<noteq> {}" by(auto dest: finite_subset)
-    then obtain a where a: "a \<notin> ?B' \<union> ?B" by auto
-    thus "b' = b" by auto
-  qed
-  thus ?thesis using infin by(simp add: finfun_default_aux_def)
-qed
-
-
-lemma finite_finfun_default_aux:
-  fixes f :: "'a \<Rightarrow> 'b"
-  assumes fin: "f \<in> finfun"
-  shows "finite {a. f a \<noteq> finfun_default_aux f}"
-proof(cases "finite (UNIV :: 'a set)")
-  case True thus ?thesis using fin
-    by(auto simp add: finfun_def finfun_default_aux_def intro: finite_subset)
-next
-  case False
-  from fin obtain b where b: "finite {a. f a \<noteq> b}" (is "finite ?B")
-    unfolding finfun_def by blast
-  with False show ?thesis by(simp add: finfun_default_aux_infinite)
-qed
-
-lemma finfun_default_aux_update_const:
-  fixes f :: "'a \<Rightarrow> 'b"
-  assumes fin: "f \<in> finfun"
-  shows "finfun_default_aux (f(a := b)) = finfun_default_aux f"
-proof(cases "finite (UNIV :: 'a set)")
-  case False
-  from fin obtain b' where b': "finite {a. f a \<noteq> b'}" unfolding finfun_def by blast
-  hence "finite {a'. (f(a := b)) a' \<noteq> b'}"
-  proof(cases "b = b' \<and> f a \<noteq> b'") 
-    case True
-    hence "{a. f a \<noteq> b'} = insert a {a'. (f(a := b)) a' \<noteq> b'}" by auto
-    thus ?thesis using b' by simp
-  next
-    case False
-    moreover
-    { assume "b \<noteq> b'"
-      hence "{a'. (f(a := b)) a' \<noteq> b'} = insert a {a. f a \<noteq> b'}" by auto
-      hence ?thesis using b' by simp }
-    moreover
-    { assume "b = b'" "f a = b'"
-      hence "{a'. (f(a := b)) a' \<noteq> b'} = {a. f a \<noteq> b'}" by auto
-      hence ?thesis using b' by simp }
-    ultimately show ?thesis by blast
-  qed
-  with False b' show ?thesis by(auto simp del: fun_upd_apply simp add: finfun_default_aux_infinite)
-next
-  case True thus ?thesis by(simp add: finfun_default_aux_def)
-qed
-
-lift_definition finfun_default :: "'a \<Rightarrow>f 'b \<Rightarrow> 'b"
-is "finfun_default_aux" .
-
-lemma finite_finfun_default: "finite {a. finfun_apply f a \<noteq> finfun_default f}"
-by transfer (erule finite_finfun_default_aux)
-
-lemma finfun_default_const: "finfun_default ((K$ b) :: 'a \<Rightarrow>f 'b) = (if finite (UNIV :: 'a set) then undefined else b)"
-by(transfer)(auto simp add: finfun_default_aux_infinite finfun_default_aux_def)
-
-lemma finfun_default_update_const:
-  "finfun_default (f(a $:= b)) = finfun_default f"
-by transfer (simp add: finfun_default_aux_update_const)
-
-lemma finfun_default_const_code [code]:
-  "finfun_default ((K$ c) :: 'a :: card_UNIV \<Rightarrow>f 'b) = (if CARD('a) = 0 then c else undefined)"
-by(simp add: finfun_default_const)
-
-lemma finfun_default_update_code [code]:
-  "finfun_default (finfun_update_code f a b) = finfun_default f"
-by(simp add: finfun_default_update_const)
-
-subsection \<open>Recursion combinator and well-formedness conditions\<close>
-
-definition finfun_rec :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow>f 'b) \<Rightarrow> 'c"
-where [code del]:
-  "finfun_rec cnst upd f \<equiv>
-   let b = finfun_default f;
-       g = THE g. f = Abs_finfun (map_default b g) \<and> finite (dom g) \<and> b \<notin> ran g
-   in Finite_Set.fold (\<lambda>a. upd a (map_default b g a)) (cnst b) (dom g)"
-
-locale finfun_rec_wf_aux =
-  fixes cnst :: "'b \<Rightarrow> 'c"
-  and upd :: "'a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c"
-  assumes upd_const_same: "upd a b (cnst b) = cnst b"
-  and upd_commute: "a \<noteq> a' \<Longrightarrow> upd a b (upd a' b' c) = upd a' b' (upd a b c)"
-  and upd_idemp: "b \<noteq> b' \<Longrightarrow> upd a b'' (upd a b' (cnst b)) = upd a b'' (cnst b)"
-begin
-
-
-lemma upd_left_comm: "comp_fun_commute (\<lambda>a. upd a (f a))"
-by(unfold_locales)(auto intro: upd_commute simp add: fun_eq_iff)
-
-lemma upd_upd_twice: "upd a b'' (upd a b' (cnst b)) = upd a b'' (cnst b)"
-by(cases "b \<noteq> b'")(auto simp add: fun_upd_def upd_const_same upd_idemp)
-
-lemma map_default_update_const:
-  assumes fin: "finite (dom f)"
-  and anf: "a \<notin> dom f"
-  and fg: "f \<subseteq>\<^sub>m g"
-  shows "upd a d  (Finite_Set.fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f)) =
-         Finite_Set.fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f)"
-proof -
-  let ?upd = "\<lambda>a. upd a (map_default d g a)"
-  let ?fr = "\<lambda>A. Finite_Set.fold ?upd (cnst d) A"
-  interpret gwf: comp_fun_commute "?upd" by(rule upd_left_comm)
-  
-  from fin anf fg show ?thesis
-  proof(induct "dom f" arbitrary: f)
-    case empty
-    from \<open>{} = dom f\<close> have "f = empty" by(auto simp add: dom_def)
-    thus ?case by(simp add: finfun_const_def upd_const_same)
-  next
-    case (insert a' A)
-    note IH = \<open>\<And>f.  \<lbrakk> A = dom f; a \<notin> dom f; f \<subseteq>\<^sub>m g \<rbrakk> \<Longrightarrow> upd a d (?fr (dom f)) = ?fr (dom f)\<close>
-    note fin = \<open>finite A\<close> note anf = \<open>a \<notin> dom f\<close> note a'nA = \<open>a' \<notin> A\<close>
-    note domf = \<open>insert a' A = dom f\<close> note fg = \<open>f \<subseteq>\<^sub>m g\<close>
-    
-    from domf obtain b where b: "f a' = Some b" by auto
-    let ?f' = "f(a' := None)"
-    have "upd a d (?fr (insert a' A)) = upd a d (upd a' (map_default d g a') (?fr A))"
-      by(subst gwf.fold_insert[OF fin a'nA]) rule
-    also from b fg have "g a' = f a'" by(auto simp add: map_le_def intro: domI dest: bspec)
-    hence ga': "map_default d g a' = map_default d f a'" by(simp add: map_default_def)
-    also from anf domf have "a \<noteq> a'" by auto note upd_commute[OF this]
-    also from domf a'nA anf fg have "a \<notin> dom ?f'" "?f' \<subseteq>\<^sub>m g" and A: "A = dom ?f'" by(auto simp add: ran_def map_le_def)
-    note A also note IH[OF A \<open>a \<notin> dom ?f'\<close> \<open>?f' \<subseteq>\<^sub>m g\<close>]
-    also have "upd a' (map_default d f a') (?fr (dom (f(a' := None)))) = ?fr (dom f)"
-      unfolding domf[symmetric] gwf.fold_insert[OF fin a'nA] ga' unfolding A ..
-    also have "insert a' (dom ?f') = dom f" using domf by auto
-    finally show ?case .
-  qed
-qed
-
-lemma map_default_update_twice:
-  assumes fin: "finite (dom f)"
-  and anf: "a \<notin> dom f"
-  and fg: "f \<subseteq>\<^sub>m g"
-  shows "upd a d'' (upd a d' (Finite_Set.fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f))) =
-         upd a d'' (Finite_Set.fold (\<lambda>a. upd a (map_default d g a)) (cnst d) (dom f))"
-proof -
-  let ?upd = "\<lambda>a. upd a (map_default d g a)"
-  let ?fr = "\<lambda>A. Finite_Set.fold ?upd (cnst d) A"
-  interpret gwf: comp_fun_commute "?upd" by(rule upd_left_comm)
-  
-  from fin anf fg show ?thesis
-  proof(induct "dom f" arbitrary: f)
-    case empty
-    from \<open>{} = dom f\<close> have "f = empty" by(auto simp add: dom_def)
-    thus ?case by(auto simp add: finfun_const_def finfun_update_def upd_upd_twice)
-  next
-    case (insert a' A)
-    note IH = \<open>\<And>f. \<lbrakk>A = dom f; a \<notin> dom f; f \<subseteq>\<^sub>m g\<rbrakk> \<Longrightarrow> upd a d'' (upd a d' (?fr (dom f))) = upd a d'' (?fr (dom f))\<close>
-    note fin = \<open>finite A\<close> note anf = \<open>a \<notin> dom f\<close> note a'nA = \<open>a' \<notin> A\<close>
-    note domf = \<open>insert a' A = dom f\<close> note fg = \<open>f \<subseteq>\<^sub>m g\<close>
-    
-    from domf obtain b where b: "f a' = Some b" by auto
-    let ?f' = "f(a' := None)"
-    let ?b' = "case f a' of None \<Rightarrow> d | Some b \<Rightarrow> b"
-    from domf have "upd a d'' (upd a d' (?fr (dom f))) = upd a d'' (upd a d' (?fr (insert a' A)))" by simp
-    also note gwf.fold_insert[OF fin a'nA]
-    also from b fg have "g a' = f a'" by(auto simp add: map_le_def intro: domI dest: bspec)
-    hence ga': "map_default d g a' = map_default d f a'" by(simp add: map_default_def)
-    also from anf domf have ana': "a \<noteq> a'" by auto note upd_commute[OF this]
-    also note upd_commute[OF ana']
-    also from domf a'nA anf fg have "a \<notin> dom ?f'" "?f' \<subseteq>\<^sub>m g" and A: "A = dom ?f'" by(auto simp add: ran_def map_le_def)
-    note A also note IH[OF A \<open>a \<notin> dom ?f'\<close> \<open>?f' \<subseteq>\<^sub>m g\<close>]
-    also note upd_commute[OF ana'[symmetric]] also note ga'[symmetric] also note A[symmetric]
-    also note gwf.fold_insert[symmetric, OF fin a'nA] also note domf
-    finally show ?case .
-  qed
-qed
-
-lemma map_default_eq_id [simp]: "map_default d ((\<lambda>a. Some (f a)) |` {a. f a \<noteq> d}) = f"
-by(auto simp add: map_default_def restrict_map_def)
-
-lemma finite_rec_cong1:
-  assumes f: "comp_fun_commute f" and g: "comp_fun_commute g"
-  and fin: "finite A"
-  and eq: "\<And>a. a \<in> A \<Longrightarrow> f a = g a"
-  shows "Finite_Set.fold f z A = Finite_Set.fold g z A"
-proof -
-  interpret f: comp_fun_commute f by(rule f)
-  interpret g: comp_fun_commute g by(rule g)
-  { fix B
-    assume BsubA: "B \<subseteq> A"
-    with fin have "finite B" by(blast intro: finite_subset)
-    hence "B \<subseteq> A \<Longrightarrow> Finite_Set.fold f z B = Finite_Set.fold g z B"
-    proof(induct)
-      case empty thus ?case by simp
-    next
-      case (insert a B)
-      note finB = \<open>finite B\<close> note anB = \<open>a \<notin> B\<close> note sub = \<open>insert a B \<subseteq> A\<close>
-      note IH = \<open>B \<subseteq> A \<Longrightarrow> Finite_Set.fold f z B = Finite_Set.fold g z B\<close>
-      from sub anB have BpsubA: "B \<subset> A" and BsubA: "B \<subseteq> A" and aA: "a \<in> A" by auto
-      from IH[OF BsubA] eq[OF aA] finB anB
-      show ?case by(auto)
-    qed
-    with BsubA have "Finite_Set.fold f z B = Finite_Set.fold g z B" by blast }
-  thus ?thesis by blast
-qed
-
-lemma finfun_rec_upd [simp]:
-  "finfun_rec cnst upd (f(a' $:= b')) = upd a' b' (finfun_rec cnst upd f)"
-  including finfun
-proof -
-  obtain b where b: "b = finfun_default f" by auto
-  let ?the = "\<lambda>f g. f = Abs_finfun (map_default b g) \<and> finite (dom g) \<and> b \<notin> ran g"
-  obtain g where g: "g = The (?the f)" by blast
-  obtain y where f: "f = Abs_finfun y" and y: "y \<in> finfun" by (cases f)
-  from f y b have bfin: "finite {a. y a \<noteq> b}" by(simp add: finfun_default_def finite_finfun_default_aux)
-
-  let ?g = "(\<lambda>a. Some (y a)) |` {a. y a \<noteq> b}"
-  from bfin have fing: "finite (dom ?g)" by auto
-  have bran: "b \<notin> ran ?g" by(auto simp add: ran_def restrict_map_def)
-  have yg: "y = map_default b ?g" by simp
-  have gg: "g = ?g" unfolding g
-  proof(rule the_equality)
-    from f y bfin show "?the f ?g"
-      by(auto)(simp add: restrict_map_def ran_def split: if_split_asm)
-  next
-    fix g'
-    assume "?the f g'"
-    hence fin': "finite (dom g')" and ran': "b \<notin> ran g'"
-      and eq: "Abs_finfun (map_default b ?g) = Abs_finfun (map_default b g')" using f yg by auto
-    from fin' fing have "map_default b ?g \<in> finfun" "map_default b g' \<in> finfun" by(blast intro: map_default_in_finfun)+
-    with eq have "map_default b ?g = map_default b g'" by simp
-    with fing bran fin' ran' show "g' = ?g" by(rule map_default_inject[OF disjI2[OF refl], THEN sym])
-  qed
-
-  show ?thesis
-  proof(cases "b' = b")
-    case True
-    note b'b = True
-
-    let ?g' = "(\<lambda>a. Some ((y(a' := b)) a)) |` {a. (y(a' := b)) a \<noteq> b}"
-    from bfin b'b have fing': "finite (dom ?g')"
-      by(auto simp add: Collect_conj_eq Collect_imp_eq intro: finite_subset)
-    have brang': "b \<notin> ran ?g'" by(auto simp add: ran_def restrict_map_def)
-
-    let ?b' = "\<lambda>a. case ?g' a of None \<Rightarrow> b | Some b \<Rightarrow> b"
-    let ?b = "map_default b ?g"
-    from upd_left_comm upd_left_comm fing'
-    have "Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g') = Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g')"
-      by(rule finite_rec_cong1)(auto simp add: restrict_map_def b'b b map_default_def)
-    also interpret gwf: comp_fun_commute "\<lambda>a. upd a (?b a)" by(rule upd_left_comm)
-    have "Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g') = upd a' b' (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g))"
-    proof(cases "y a' = b")
-      case True
-      with b'b have g': "?g' = ?g" by(auto simp add: restrict_map_def)
-      from True have a'ndomg: "a' \<notin> dom ?g" by auto
-      from f b'b b show ?thesis unfolding g'
-        by(subst map_default_update_const[OF fing a'ndomg map_le_refl, symmetric]) simp
-    next
-      case False
-      hence domg: "dom ?g = insert a' (dom ?g')" by auto
-      from False b'b have a'ndomg': "a' \<notin> dom ?g'" by auto
-      have "Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (insert a' (dom ?g')) = 
-            upd a' (?b a') (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'))"
-        using fing' a'ndomg' unfolding b'b by(rule gwf.fold_insert)
-      hence "upd a' b (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (insert a' (dom ?g'))) =
-             upd a' b (upd a' (?b a') (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g')))" by simp
-      also from b'b have g'leg: "?g' \<subseteq>\<^sub>m ?g" by(auto simp add: restrict_map_def map_le_def)
-      note map_default_update_twice[OF fing' a'ndomg' this, of b "?b a'" b]
-      also note map_default_update_const[OF fing' a'ndomg' g'leg, of b]
-      finally show ?thesis unfolding b'b domg[unfolded b'b] by(rule sym)
-    qed
-    also have "The (?the (f(a' $:= b'))) = ?g'"
-    proof(rule the_equality)
-      from f y b b'b brang' fing' show "?the (f(a' $:= b')) ?g'"
-        by(auto simp del: fun_upd_apply simp add: finfun_update_def)
-    next
-      fix g'
-      assume "?the (f(a' $:= b')) g'"
-      hence fin': "finite (dom g')" and ran': "b \<notin> ran g'"
-        and eq: "f(a' $:= b') = Abs_finfun (map_default b g')" 
-        by(auto simp del: fun_upd_apply)
-      from fin' fing' have "map_default b g' \<in> finfun" "map_default b ?g' \<in> finfun"
-        by(blast intro: map_default_in_finfun)+
-      with eq f b'b b have "map_default b ?g' = map_default b g'"
-        by(simp del: fun_upd_apply add: finfun_update_def)
-      with fing' brang' fin' ran' show "g' = ?g'"
-        by(rule map_default_inject[OF disjI2[OF refl], THEN sym])
-    qed
-    ultimately show ?thesis unfolding finfun_rec_def Let_def b gg[unfolded g b] using bfin b'b b
-      by(simp only: finfun_default_update_const map_default_def)
-  next
-    case False
-    note b'b = this
-    let ?g' = "?g(a' \<mapsto> b')"
-    let ?b' = "map_default b ?g'"
-    let ?b = "map_default b ?g"
-    from fing have fing': "finite (dom ?g')" by auto
-    from bran b'b have bnrang': "b \<notin> ran ?g'" by(auto simp add: ran_def)
-    have ffmg': "map_default b ?g' = y(a' := b')" by(auto simp add: map_default_def restrict_map_def)
-    with f y have f_Abs: "f(a' $:= b') = Abs_finfun (map_default b ?g')" by(auto simp add: finfun_update_def)
-    have g': "The (?the (f(a' $:= b'))) = ?g'"
-    proof (rule the_equality)
-      from fing' bnrang' f_Abs show "?the (f(a' $:= b')) ?g'"
-        by(auto simp add: finfun_update_def restrict_map_def)
-    next
-      fix g' assume "?the (f(a' $:= b')) g'"
-      hence f': "f(a' $:= b') = Abs_finfun (map_default b g')"
-        and fin': "finite (dom g')" and brang': "b \<notin> ran g'" by auto
-      from fing' fin' have "map_default b ?g' \<in> finfun" "map_default b g' \<in> finfun"
-        by(auto intro: map_default_in_finfun)
-      with f' f_Abs have "map_default b g' = map_default b ?g'" by simp
-      with fin' brang' fing' bnrang' show "g' = ?g'"
-        by(rule map_default_inject[OF disjI2[OF refl]])
-    qed
-    have dom: "dom (((\<lambda>a. Some (y a)) |` {a. y a \<noteq> b})(a' \<mapsto> b')) = insert a' (dom ((\<lambda>a. Some (y a)) |` {a. y a \<noteq> b}))"
-      by auto
-    show ?thesis
-    proof(cases "y a' = b")
-      case True
-      hence a'ndomg: "a' \<notin> dom ?g" by auto
-      from f y b'b True have yff: "y = map_default b (?g' |` dom ?g)"
-        by(auto simp add: restrict_map_def map_default_def intro!: ext)
-      hence f': "f = Abs_finfun (map_default b (?g' |` dom ?g))" using f by simp
-      interpret g'wf: comp_fun_commute "\<lambda>a. upd a (?b' a)" by(rule upd_left_comm)
-      from upd_left_comm upd_left_comm fing
-      have "Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g) = Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g)"
-        by(rule finite_rec_cong1)(auto simp add: restrict_map_def b'b True map_default_def)
-      thus ?thesis unfolding finfun_rec_def Let_def finfun_default_update_const b[symmetric]
-        unfolding g' g[symmetric] gg g'wf.fold_insert[OF fing a'ndomg, of "cnst b", folded dom]
-        by -(rule arg_cong2[where f="upd a'"], simp_all add: map_default_def)
-    next
-      case False
-      hence "insert a' (dom ?g) = dom ?g" by auto
-      moreover {
-        let ?g'' = "?g(a' := None)"
-        let ?b'' = "map_default b ?g''"
-        from False have domg: "dom ?g = insert a' (dom ?g'')" by auto
-        from False have a'ndomg'': "a' \<notin> dom ?g''" by auto
-        have fing'': "finite (dom ?g'')" by(rule finite_subset[OF _ fing]) auto
-        have bnrang'': "b \<notin> ran ?g''" by(auto simp add: ran_def restrict_map_def)
-        interpret gwf: comp_fun_commute "\<lambda>a. upd a (?b a)" by(rule upd_left_comm)
-        interpret g'wf: comp_fun_commute "\<lambda>a. upd a (?b' a)" by(rule upd_left_comm)
-        have "upd a' b' (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (insert a' (dom ?g''))) =
-              upd a' b' (upd a' (?b a') (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'')))"
-          unfolding gwf.fold_insert[OF fing'' a'ndomg''] f ..
-        also have g''leg: "?g |` dom ?g'' \<subseteq>\<^sub>m ?g" by(auto simp add: map_le_def)
-        have "dom (?g |` dom ?g'') = dom ?g''" by auto
-        note map_default_update_twice[where d=b and f = "?g |` dom ?g''" and a=a' and d'="?b a'" and d''=b' and g="?g",
-                                     unfolded this, OF fing'' a'ndomg'' g''leg]
-        also have b': "b' = ?b' a'" by(auto simp add: map_default_def)
-        from upd_left_comm upd_left_comm fing''
-        have "Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'') =
-          Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g'')"
-          by(rule finite_rec_cong1)(auto simp add: restrict_map_def b'b map_default_def)
-        with b' have "upd a' b' (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g'')) =
-                     upd a' (?b' a') (Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g''))" by simp
-        also note g'wf.fold_insert[OF fing'' a'ndomg'', symmetric]
-        finally have "upd a' b' (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g)) =
-                   Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (dom ?g)"
-          unfolding domg . }
-      ultimately have "Finite_Set.fold (\<lambda>a. upd a (?b' a)) (cnst b) (insert a' (dom ?g)) =
-                    upd a' b' (Finite_Set.fold (\<lambda>a. upd a (?b a)) (cnst b) (dom ?g))" by simp
-      thus ?thesis unfolding finfun_rec_def Let_def finfun_default_update_const b[symmetric] g[symmetric] g' dom[symmetric]
-        using b'b gg by(simp add: map_default_insert)
-    qed
-  qed
-qed
-
-end
-
-locale finfun_rec_wf = finfun_rec_wf_aux + 
-  assumes const_update_all:
-  "finite (UNIV :: 'a set) \<Longrightarrow> Finite_Set.fold (\<lambda>a. upd a b') (cnst b) (UNIV :: 'a set) = cnst b'"
-begin
-
-lemma finfun_rec_const [simp]: "finfun_rec cnst upd (K$ c) = cnst c"
-  including finfun
-proof(cases "finite (UNIV :: 'a set)")
-  case False
-  hence "finfun_default ((K$ c) :: 'a \<Rightarrow>f 'b) = c" by(simp add: finfun_default_const)
-  moreover have "(THE g :: 'a \<rightharpoonup> 'b. (K$ c) = Abs_finfun (map_default c g) \<and> finite (dom g) \<and> c \<notin> ran g) = empty"
-  proof (rule the_equality)
-    show "(K$ c) = Abs_finfun (map_default c empty) \<and> finite (dom empty) \<and> c \<notin> ran empty"
-      by(auto simp add: finfun_const_def)
-  next
-    fix g :: "'a \<rightharpoonup> 'b"
-    assume "(K$ c) = Abs_finfun (map_default c g) \<and> finite (dom g) \<and> c \<notin> ran g"
-    hence g: "(K$ c) = Abs_finfun (map_default c g)" and fin: "finite (dom g)" and ran: "c \<notin> ran g" by blast+
-    from g map_default_in_finfun[OF fin, of c] have "map_default c g = (\<lambda>a. c)"
-      by(simp add: finfun_const_def)
-    moreover have "map_default c empty = (\<lambda>a. c)" by simp
-    ultimately show "g = empty" by-(rule map_default_inject[OF disjI2[OF refl] fin ran], auto)
-  qed
-  ultimately show ?thesis by(simp add: finfun_rec_def)
-next
-  case True
-  hence default: "finfun_default ((K$ c) :: 'a \<Rightarrow>f 'b) = undefined" by(simp add: finfun_default_const)
-  let ?the = "\<lambda>g :: 'a \<rightharpoonup> 'b. (K$ c) = Abs_finfun (map_default undefined g) \<and> finite (dom g) \<and> undefined \<notin> ran g"
-  show ?thesis
-  proof(cases "c = undefined")
-    case True
-    have the: "The ?the = empty"
-    proof (rule the_equality)
-      from True show "?the empty" by(auto simp add: finfun_const_def)
-    next
-      fix g'
-      assume "?the g'"
-      hence fg: "(K$ c) = Abs_finfun (map_default undefined g')"
-        and fin: "finite (dom g')" and g: "undefined \<notin> ran g'" by simp_all
-      from fin have "map_default undefined g' \<in> finfun" by(rule map_default_in_finfun)
-      with fg have "map_default undefined g' = (\<lambda>a. c)"
-        by(auto simp add: finfun_const_def intro: Abs_finfun_inject[THEN iffD1, symmetric])
-      with True show "g' = empty"
-        by -(rule map_default_inject(2)[OF _ fin g], auto)
-    qed
-    show ?thesis unfolding finfun_rec_def using \<open>finite UNIV\<close> True
-      unfolding Let_def the default by(simp)
-  next
-    case False
-    have the: "The ?the = (\<lambda>a :: 'a. Some c)"
-    proof (rule the_equality)
-      from False True show "?the (\<lambda>a :: 'a. Some c)"
-        by(auto simp add: map_default_def [abs_def] finfun_const_def dom_def ran_def)
-    next
-      fix g' :: "'a \<rightharpoonup> 'b"
-      assume "?the g'"
-      hence fg: "(K$ c) = Abs_finfun (map_default undefined g')"
-        and fin: "finite (dom g')" and g: "undefined \<notin> ran g'" by simp_all
-      from fin have "map_default undefined g' \<in> finfun" by(rule map_default_in_finfun)
-      with fg have "map_default undefined g' = (\<lambda>a. c)"
-        by(auto simp add: finfun_const_def intro: Abs_finfun_inject[THEN iffD1])
-      with True False show "g' = (\<lambda>a::'a. Some c)"
-        by - (rule map_default_inject(2)[OF _ fin g],
-          auto simp add: dom_def ran_def map_default_def [abs_def])
-    qed
-    show ?thesis unfolding finfun_rec_def using True False
-      unfolding Let_def the default by(simp add: dom_def map_default_def const_update_all)
-  qed
-qed
-
-end
-
-subsection \<open>Weak induction rule and case analysis for FinFuns\<close>
-
-lemma finfun_weak_induct [consumes 0, case_names const update]:
-  assumes const: "\<And>b. P (K$ b)"
-  and update: "\<And>f a b. P f \<Longrightarrow> P (f(a $:= b))"
-  shows "P x"
-  including finfun
-proof(induct x rule: Abs_finfun_induct)
-  case (Abs_finfun y)
-  then obtain b where "finite {a. y a \<noteq> b}" unfolding finfun_def by blast
-  thus ?case using \<open>y \<in> finfun\<close>
-  proof(induct "{a. y a \<noteq> b}" arbitrary: y rule: finite_induct)
-    case empty
-    hence "\<And>a. y a = b" by blast
-    hence "y = (\<lambda>a. b)" by(auto)
-    hence "Abs_finfun y = finfun_const b" unfolding finfun_const_def by simp
-    thus ?case by(simp add: const)
-  next
-    case (insert a A)
-    note IH = \<open>\<And>y. \<lbrakk> A = {a. y a \<noteq> b}; y \<in> finfun  \<rbrakk> \<Longrightarrow> P (Abs_finfun y)\<close>
-    note y = \<open>y \<in> finfun\<close>
-    with \<open>insert a A = {a. y a \<noteq> b}\<close> \<open>a \<notin> A\<close>
-    have "A = {a'. (y(a := b)) a' \<noteq> b}" "y(a := b) \<in> finfun" by auto
-    from IH[OF this] have "P (finfun_update (Abs_finfun (y(a := b))) a (y a))" by(rule update)
-    thus ?case using y unfolding finfun_update_def by simp
-  qed
-qed
-
-lemma finfun_exhaust_disj: "(\<exists>b. x = finfun_const b) \<or> (\<exists>f a b. x = finfun_update f a b)"
-by(induct x rule: finfun_weak_induct) blast+
-
-lemma finfun_exhaust:
-  obtains b where "x = (K$ b)"
-        | f a b where "x = f(a $:= b)"
-by(atomize_elim)(rule finfun_exhaust_disj)
-
-lemma finfun_rec_unique:
-  fixes f :: "'a \<Rightarrow>f 'b \<Rightarrow> 'c"
-  assumes c: "\<And>c. f (K$ c) = cnst c"
-  and u: "\<And>g a b. f (g(a $:= b)) = upd g a b (f g)"
-  and c': "\<And>c. f' (K$ c) = cnst c"
-  and u': "\<And>g a b. f' (g(a $:= b)) = upd g a b (f' g)"
-  shows "f = f'"
-proof
-  fix g :: "'a \<Rightarrow>f 'b"
-  show "f g = f' g"
-    by(induct g rule: finfun_weak_induct)(auto simp add: c u c' u')
-qed
-
-
-subsection \<open>Function application\<close>
-
-notation finfun_apply (infixl "$" 999)
-
-interpretation finfun_apply_aux: finfun_rec_wf_aux "\<lambda>b. b" "\<lambda>a' b c. if (a = a') then b else c"
-by(unfold_locales) auto
-
-interpretation finfun_apply: finfun_rec_wf "\<lambda>b. b" "\<lambda>a' b c. if (a = a') then b else c"
-proof(unfold_locales)
-  fix b' b :: 'a
-  assume fin: "finite (UNIV :: 'b set)"
-  { fix A :: "'b set"
-    interpret comp_fun_commute "\<lambda>a'. If (a = a') b'" by(rule finfun_apply_aux.upd_left_comm)
-    from fin have "finite A" by(auto intro: finite_subset)
-    hence "Finite_Set.fold (\<lambda>a'. If (a = a') b') b A = (if a \<in> A then b' else b)"
-      by induct auto }
-  from this[of UNIV] show "Finite_Set.fold (\<lambda>a'. If (a = a') b') b UNIV = b'" by simp
-qed
-
-lemma finfun_apply_def: "op $ = (\<lambda>f a. finfun_rec (\<lambda>b. b) (\<lambda>a' b c. if (a = a') then b else c) f)"
-proof(rule finfun_rec_unique)
-  fix c show "op $ (K$ c) = (\<lambda>a. c)" by(simp add: finfun_const.rep_eq)
-next
-  fix g a b show "op $ g(a $:= b) = (\<lambda>c. if c = a then b else g $ c)"
-    by(auto simp add: finfun_update_def fun_upd_finfun Abs_finfun_inverse finfun_apply)
-qed auto
-
-lemma finfun_upd_apply: "f(a $:= b) $ a' = (if a = a' then b else f $ a')"
-  and finfun_upd_apply_code [code]: "(finfun_update_code f a b) $ a' = (if a = a' then b else f $ a')"
-by(simp_all add: finfun_apply_def)
-
-lemma finfun_const_apply [simp, code]: "(K$ b) $ a = b"
-by(simp add: finfun_apply_def)
-
-lemma finfun_upd_apply_same [simp]:
-  "f(a $:= b) $ a = b"
-by(simp add: finfun_upd_apply)
-
-lemma finfun_upd_apply_other [simp]:
-  "a \<noteq> a' \<Longrightarrow> f(a $:= b) $ a' = f $ a'"
-by(simp add: finfun_upd_apply)
-
-lemma finfun_ext: "(\<And>a. f $ a = g $ a) \<Longrightarrow> f = g"
-by(auto simp add: finfun_apply_inject[symmetric])
-
-lemma expand_finfun_eq: "(f = g) = (op $ f = op $ g)"
-by(auto intro: finfun_ext)
-
-lemma finfun_upd_triv [simp]: "f(x $:= f $ x) = f"
-by(simp add: expand_finfun_eq fun_eq_iff finfun_upd_apply)
-
-lemma finfun_const_inject [simp]: "(K$ b) = (K$ b') \<equiv> b = b'"
-by(simp add: expand_finfun_eq fun_eq_iff)
-
-lemma finfun_const_eq_update:
-  "((K$ b) = f(a $:= b')) = (b = b' \<and> (\<forall>a'. a \<noteq> a' \<longrightarrow> f $ a' = b))"
-by(auto simp add: expand_finfun_eq fun_eq_iff finfun_upd_apply)
-
-subsection \<open>Function composition\<close>
-
-definition finfun_comp :: "('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow>f 'a \<Rightarrow> 'c \<Rightarrow>f 'b"  (infixr "\<circ>$" 55)
-where [code del]: "g \<circ>$ f  = finfun_rec (\<lambda>b. (K$ g b)) (\<lambda>a b c. c(a $:= g b)) f"
-
-notation (ASCII)
-  finfun_comp (infixr "o$" 55)
-
-interpretation finfun_comp_aux: finfun_rec_wf_aux "(\<lambda>b. (K$ g b))" "(\<lambda>a b c. c(a $:= g b))"
-by(unfold_locales)(auto simp add: finfun_upd_apply intro: finfun_ext)
-
-interpretation finfun_comp: finfun_rec_wf "(\<lambda>b. (K$ g b))" "(\<lambda>a b c. c(a $:= g b))"
-proof
-  fix b' b :: 'a
-  assume fin: "finite (UNIV :: 'c set)"
-  { fix A :: "'c set"
-    from fin have "finite A" by(auto intro: finite_subset)
-    hence "Finite_Set.fold (\<lambda>(a :: 'c) c. c(a $:= g b')) (K$ g b) A =
-      Abs_finfun (\<lambda>a. if a \<in> A then g b' else g b)"
-      by induct (simp_all add: finfun_const_def, auto simp add: finfun_update_def Abs_finfun_inverse_finite fun_upd_def Abs_finfun_inject_finite fun_eq_iff fin) }
-  from this[of UNIV] show "Finite_Set.fold (\<lambda>(a :: 'c) c. c(a $:= g b')) (K$ g b) UNIV = (K$ g b')"
-    by(simp add: finfun_const_def)
-qed
-
-lemma finfun_comp_const [simp, code]:
-  "g \<circ>$ (K$ c) = (K$ g c)"
-by(simp add: finfun_comp_def)
-
-lemma finfun_comp_update [simp]: "g \<circ>$ (f(a $:= b)) = (g \<circ>$ f)(a $:= g b)"
-  and finfun_comp_update_code [code]: 
-  "g \<circ>$ (finfun_update_code f a b) = finfun_update_code (g \<circ>$ f) a (g b)"
-by(simp_all add: finfun_comp_def)
-
-lemma finfun_comp_apply [simp]:
-  "op $ (g \<circ>$ f) = g \<circ> op $ f"
-by(induct f rule: finfun_weak_induct)(auto simp add: finfun_upd_apply)
-
-lemma finfun_comp_comp_collapse [simp]: "f \<circ>$ g \<circ>$ h = (f \<circ> g) \<circ>$ h"
-by(induct h rule: finfun_weak_induct) simp_all
-
-lemma finfun_comp_const1 [simp]: "(\<lambda>x. c) \<circ>$ f = (K$ c)"
-by(induct f rule: finfun_weak_induct)(auto intro: finfun_ext simp add: finfun_upd_apply)
-
-lemma finfun_comp_id1 [simp]: "(\<lambda>x. x) \<circ>$ f = f" "id \<circ>$ f = f"
-by(induct f rule: finfun_weak_induct) auto
-
-lemma finfun_comp_conv_comp: "g \<circ>$ f = Abs_finfun (g \<circ> op $ f)"
-  including finfun
-proof -
-  have "(\<lambda>f. g \<circ>$ f) = (\<lambda>f. Abs_finfun (g \<circ> op $ f))"
-  proof(rule finfun_rec_unique)
-    { fix c show "Abs_finfun (g \<circ> op $ (K$ c)) = (K$ g c)"
-        by(simp add: finfun_comp_def o_def)(simp add: finfun_const_def) }
-    { fix g' a b show "Abs_finfun (g \<circ> op $ g'(a $:= b)) = (Abs_finfun (g \<circ> op $ g'))(a $:= g b)"
-      proof -
-        obtain y where y: "y \<in> finfun" and g': "g' = Abs_finfun y" by(cases g')
-        moreover from g' have "(g \<circ> op $ g') \<in> finfun" by(simp add: finfun_left_compose)
-        moreover have "g \<circ> y(a := b) = (g \<circ> y)(a := g b)" by(auto)
-        ultimately show ?thesis by(simp add: finfun_comp_def finfun_update_def)
-      qed }
-  qed auto
-  thus ?thesis by(auto simp add: fun_eq_iff)
-qed
-
-definition finfun_comp2 :: "'b \<Rightarrow>f 'c \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow>f 'c"  (infixr "$\<circ>" 55)
-where [code del]: "g $\<circ> f = Abs_finfun (op $ g \<circ> f)"
-
-notation (ASCII)
-  finfun_comp2  (infixr "$o" 55)
-
-lemma finfun_comp2_const [code, simp]: "finfun_comp2 (K$ c) f = (K$ c)"
-  including finfun
-by(simp add: finfun_comp2_def finfun_const_def comp_def)
-
-lemma finfun_comp2_update:
-  assumes inj: "inj f"
-  shows "finfun_comp2 (g(b $:= c)) f = (if b \<in> range f then (finfun_comp2 g f)(inv f b $:= c) else finfun_comp2 g f)"
-  including finfun
-proof(cases "b \<in> range f")
-  case True
-  from inj have "\<And>x. (op $ g)(f x := c) \<circ> f = (op $ g \<circ> f)(x := c)" by(auto intro!: ext dest: injD)
-  with inj True show ?thesis by(auto simp add: finfun_comp2_def finfun_update_def finfun_right_compose)
-next
-  case False
-  hence "(op $ g)(b := c) \<circ> f = op $ g \<circ> f" by(auto simp add: fun_eq_iff)
-  with False show ?thesis by(auto simp add: finfun_comp2_def finfun_update_def)
-qed
-
-subsection \<open>Universal quantification\<close>
-
-definition finfun_All_except :: "'a list \<Rightarrow> 'a \<Rightarrow>f bool \<Rightarrow> bool"
-where [code del]: "finfun_All_except A P \<equiv> \<forall>a. a \<in> set A \<or> P $ a"
-
-lemma finfun_All_except_const: "finfun_All_except A (K$ b) \<longleftrightarrow> b \<or> set A = UNIV"
-by(auto simp add: finfun_All_except_def)
-
-lemma finfun_All_except_const_finfun_UNIV_code [code]:
-  "finfun_All_except A (K$ b) = (b \<or> is_list_UNIV A)"
-by(simp add: finfun_All_except_const is_list_UNIV_iff)
-
-lemma finfun_All_except_update:
-  "finfun_All_except A f(a $:= b) = ((a \<in> set A \<or> b) \<and> finfun_All_except (a # A) f)"
-by(fastforce simp add: finfun_All_except_def finfun_upd_apply)
-
-lemma finfun_All_except_update_code [code]:
-  fixes a :: "'a :: card_UNIV"
-  shows "finfun_All_except A (finfun_update_code f a b) = ((a \<in> set A \<or> b) \<and> finfun_All_except (a # A) f)"
-by(simp add: finfun_All_except_update)
-
-definition finfun_All :: "'a \<Rightarrow>f bool \<Rightarrow> bool"
-where "finfun_All = finfun_All_except []"
-
-lemma finfun_All_const [simp]: "finfun_All (K$ b) = b"
-by(simp add: finfun_All_def finfun_All_except_def)
-
-lemma finfun_All_update: "finfun_All f(a $:= b) = (b \<and> finfun_All_except [a] f)"
-by(simp add: finfun_All_def finfun_All_except_update)
-
-lemma finfun_All_All: "finfun_All P = All (op $ P)"
-by(simp add: finfun_All_def finfun_All_except_def)
-
-
-definition finfun_Ex :: "'a \<Rightarrow>f bool \<Rightarrow> bool"
-where "finfun_Ex P = Not (finfun_All (Not \<circ>$ P))"
-
-lemma finfun_Ex_Ex: "finfun_Ex P = Ex (op $ P)"
-unfolding finfun_Ex_def finfun_All_All by simp
-
-lemma finfun_Ex_const [simp]: "finfun_Ex (K$ b) = b"
-by(simp add: finfun_Ex_def)
-
-
-subsection \<open>A diagonal operator for FinFuns\<close>
-
-definition finfun_Diag :: "'a \<Rightarrow>f 'b \<Rightarrow> 'a \<Rightarrow>f 'c \<Rightarrow> 'a \<Rightarrow>f ('b \<times> 'c)" ("(1'($_,/ _$'))" [0, 0] 1000)
-where [code del]: "($f, g$) = finfun_rec (\<lambda>b. Pair b \<circ>$ g) (\<lambda>a b c. c(a $:= (b, g $ a))) f"
-
-interpretation finfun_Diag_aux: finfun_rec_wf_aux "\<lambda>b. Pair b \<circ>$ g" "\<lambda>a b c. c(a $:= (b, g $ a))"
-by(unfold_locales)(simp_all add: expand_finfun_eq fun_eq_iff finfun_upd_apply)
-
-interpretation finfun_Diag: finfun_rec_wf "\<lambda>b. Pair b \<circ>$ g" "\<lambda>a b c. c(a $:= (b, g $ a))"
-proof
-  fix b' b :: 'a
-  assume fin: "finite (UNIV :: 'c set)"
-  { fix A :: "'c set"
-    interpret comp_fun_commute "\<lambda>a c. c(a $:= (b', g $ a))" by(rule finfun_Diag_aux.upd_left_comm)
-    from fin have "finite A" by(auto intro: finite_subset)
-    hence "Finite_Set.fold (\<lambda>a c. c(a $:= (b', g $ a))) (Pair b \<circ>$ g) A =
-      Abs_finfun (\<lambda>a. (if a \<in> A then b' else b, g $ a))"
-      by(induct)(simp_all add: finfun_const_def finfun_comp_conv_comp o_def,
-                 auto simp add: finfun_update_def Abs_finfun_inverse_finite fun_upd_def Abs_finfun_inject_finite fun_eq_iff fin) }
-  from this[of UNIV] show "Finite_Set.fold (\<lambda>a c. c(a $:= (b', g $ a))) (Pair b \<circ>$ g) UNIV = Pair b' \<circ>$ g"
-    by(simp add: finfun_const_def finfun_comp_conv_comp o_def)
-qed
-
-lemma finfun_Diag_const1: "($K$ b, g$) = Pair b \<circ>$ g"
-by(simp add: finfun_Diag_def)
-
-text \<open>
-  Do not use @{thm finfun_Diag_const1} for the code generator because @{term "Pair b"} is injective, i.e. if @{term g} is free of redundant updates, there is no need to check for redundant updates as is done for @{term "op \<circ>$"}.
-\<close>
-
-lemma finfun_Diag_const_code [code]:
-  "($K$ b, K$ c$) = (K$ (b, c))"
-  "($K$ b, finfun_update_code g a c$) = finfun_update_code ($K$ b, g$) a (b, c)"
-by(simp_all add: finfun_Diag_const1)
-
-lemma finfun_Diag_update1: "($f(a $:= b), g$) = ($f, g$)(a $:= (b, g $ a))"
-  and finfun_Diag_update1_code [code]: "($finfun_update_code f a b, g$) = ($f, g$)(a $:= (b, g $ a))"
-by(simp_all add: finfun_Diag_def)
-
-lemma finfun_Diag_const2: "($f, K$ c$) = (\<lambda>b. (b, c)) \<circ>$ f"
-by(induct f rule: finfun_weak_induct)(auto intro!: finfun_ext simp add: finfun_upd_apply finfun_Diag_const1 finfun_Diag_update1)
-
-lemma finfun_Diag_update2: "($f, g(a $:= c)$) = ($f, g$)(a $:= (f $ a, c))"
-by(induct f rule: finfun_weak_induct)(auto intro!: finfun_ext simp add: finfun_upd_apply finfun_Diag_const1 finfun_Diag_update1)
-
-lemma finfun_Diag_const_const [simp]: "($K$ b, K$ c$) = (K$ (b, c))"
-by(simp add: finfun_Diag_const1)
-
-lemma finfun_Diag_const_update:
-  "($K$ b, g(a $:= c)$) = ($K$ b, g$)(a $:= (b, c))"
-by(simp add: finfun_Diag_const1)
-
-lemma finfun_Diag_update_const:
-  "($f(a $:= b), K$ c$) = ($f, K$ c$)(a $:= (b, c))"
-by(simp add: finfun_Diag_def)
-
-lemma finfun_Diag_update_update:
-  "($f(a $:= b), g(a' $:= c)$) = (if a = a' then ($f, g$)(a $:= (b, c)) else ($f, g$)(a $:= (b, g $ a))(a' $:= (f $ a', c)))"
-by(auto simp add: finfun_Diag_update1 finfun_Diag_update2)
-
-lemma finfun_Diag_apply [simp]: "op $ ($f, g$) = (\<lambda>x. (f $ x, g $ x))"
-by(induct f rule: finfun_weak_induct)(auto simp add: finfun_Diag_const1 finfun_Diag_update1 finfun_upd_apply)
-
-lemma finfun_Diag_conv_Abs_finfun:
-  "($f, g$) = Abs_finfun ((\<lambda>x. (f $ x, g $ x)))"
-  including finfun
-proof -
-  have "(\<lambda>f :: 'a \<Rightarrow>f 'b. ($f, g$)) = (\<lambda>f. Abs_finfun ((\<lambda>x. (f $ x, g $ x))))"
-  proof(rule finfun_rec_unique)
-    { fix c show "Abs_finfun (\<lambda>x. ((K$ c) $ x, g $ x)) = Pair c \<circ>$ g"
-        by(simp add: finfun_comp_conv_comp o_def finfun_const_def) }
-    { fix g' a b
-      show "Abs_finfun (\<lambda>x. (g'(a $:= b) $ x, g $ x)) =
-            (Abs_finfun (\<lambda>x. (g' $ x, g $ x)))(a $:= (b, g $ a))"
-        by(auto simp add: finfun_update_def fun_eq_iff simp del: fun_upd_apply) simp }
-  qed(simp_all add: finfun_Diag_const1 finfun_Diag_update1)
-  thus ?thesis by(auto simp add: fun_eq_iff)
-qed
-
-lemma finfun_Diag_eq: "($f, g$) = ($f', g'$) \<longleftrightarrow> f = f' \<and> g = g'"
-by(auto simp add: expand_finfun_eq fun_eq_iff)
-
-definition finfun_fst :: "'a \<Rightarrow>f ('b \<times> 'c) \<Rightarrow> 'a \<Rightarrow>f 'b"
-where [code]: "finfun_fst f = fst \<circ>$ f"
-
-lemma finfun_fst_const: "finfun_fst (K$ bc) = (K$ fst bc)"
-by(simp add: finfun_fst_def)
-
-lemma finfun_fst_update: "finfun_fst (f(a $:= bc)) = (finfun_fst f)(a $:= fst bc)"
-  and finfun_fst_update_code: "finfun_fst (finfun_update_code f a bc) = (finfun_fst f)(a $:= fst bc)"
-by(simp_all add: finfun_fst_def)
-
-lemma finfun_fst_comp_conv: "finfun_fst (f \<circ>$ g) = (fst \<circ> f) \<circ>$ g"
-by(simp add: finfun_fst_def)
-
-lemma finfun_fst_conv [simp]: "finfun_fst ($f, g$) = f"
-by(induct f rule: finfun_weak_induct)(simp_all add: finfun_Diag_const1 finfun_fst_comp_conv o_def finfun_Diag_update1 finfun_fst_update)
-
-lemma finfun_fst_conv_Abs_finfun: "finfun_fst = (\<lambda>f. Abs_finfun (fst \<circ> op $ f))"
-by(simp add: finfun_fst_def [abs_def] finfun_comp_conv_comp)
-
-
-definition finfun_snd :: "'a \<Rightarrow>f ('b \<times> 'c) \<Rightarrow> 'a \<Rightarrow>f 'c"
-where [code]: "finfun_snd f = snd \<circ>$ f"
-
-lemma finfun_snd_const: "finfun_snd (K$ bc) = (K$ snd bc)"
-by(simp add: finfun_snd_def)
-
-lemma finfun_snd_update: "finfun_snd (f(a $:= bc)) = (finfun_snd f)(a $:= snd bc)"
-  and finfun_snd_update_code [code]: "finfun_snd (finfun_update_code f a bc) = (finfun_snd f)(a $:= snd bc)"
-by(simp_all add: finfun_snd_def)
-
-lemma finfun_snd_comp_conv: "finfun_snd (f \<circ>$ g) = (snd \<circ> f) \<circ>$ g"
-by(simp add: finfun_snd_def)
-
-lemma finfun_snd_conv [simp]: "finfun_snd ($f, g$) = g"
-apply(induct f rule: finfun_weak_induct)
-apply(auto simp add: finfun_Diag_const1 finfun_snd_comp_conv o_def finfun_Diag_update1 finfun_snd_update finfun_upd_apply intro: finfun_ext)
-done
-
-lemma finfun_snd_conv_Abs_finfun: "finfun_snd = (\<lambda>f. Abs_finfun (snd \<circ> op $ f))"
-by(simp add: finfun_snd_def [abs_def] finfun_comp_conv_comp)
-
-lemma finfun_Diag_collapse [simp]: "($finfun_fst f, finfun_snd f$) = f"
-by(induct f rule: finfun_weak_induct)(simp_all add: finfun_fst_const finfun_snd_const finfun_fst_update finfun_snd_update finfun_Diag_update_update)
-
-subsection \<open>Currying for FinFuns\<close>
-
-definition finfun_curry :: "('a \<times> 'b) \<Rightarrow>f 'c \<Rightarrow> 'a \<Rightarrow>f 'b \<Rightarrow>f 'c"
-where [code del]: "finfun_curry = finfun_rec (finfun_const \<circ> finfun_const) (\<lambda>(a, b) c f. f(a $:= (f $ a)(b $:= c)))"
-
-interpretation finfun_curry_aux: finfun_rec_wf_aux "finfun_const \<circ> finfun_const" "\<lambda>(a, b) c f. f(a $:= (f $ a)(b $:= c))"
-apply(unfold_locales)
-apply(auto simp add: split_def finfun_update_twist finfun_upd_apply split_paired_all finfun_update_const_same)
-done
-
-interpretation finfun_curry: finfun_rec_wf "finfun_const \<circ> finfun_const" "\<lambda>(a, b) c f. f(a $:= (f $ a)(b $:= c))"
-proof(unfold_locales)
-  fix b' b :: 'b
-  assume fin: "finite (UNIV :: ('c \<times> 'a) set)"
-  hence fin1: "finite (UNIV :: 'c set)" and fin2: "finite (UNIV :: 'a set)"
-    unfolding UNIV_Times_UNIV[symmetric]
-    by(fastforce dest: finite_cartesian_productD1 finite_cartesian_productD2)+
-  note [simp] = Abs_finfun_inverse_finite[OF fin] Abs_finfun_inverse_finite[OF fin1] Abs_finfun_inverse_finite[OF fin2]
-  { fix A :: "('c \<times> 'a) set"
-    interpret comp_fun_commute "\<lambda>a :: 'c \<times> 'a. (\<lambda>(a, b) c f. f(a $:= (f $ a)(b $:= c))) a b'"
-      by(rule finfun_curry_aux.upd_left_comm)
-    from fin have "finite A" by(auto intro: finite_subset)
-    hence "Finite_Set.fold (\<lambda>a :: 'c \<times> 'a. (\<lambda>(a, b) c f. f(a $:= (f $ a)(b $:= c))) a b') ((finfun_const \<circ> finfun_const) b) A = Abs_finfun (\<lambda>a. Abs_finfun (\<lambda>b''. if (a, b'') \<in> A then b' else b))"
-      by induct (simp_all, auto simp add: finfun_update_def finfun_const_def split_def intro!: arg_cong[where f="Abs_finfun"] ext) }
-  from this[of UNIV]
-  show "Finite_Set.fold (\<lambda>a :: 'c \<times> 'a. (\<lambda>(a, b) c f. f(a $:= (f $ a)(b $:= c))) a b') ((finfun_const \<circ> finfun_const) b) UNIV = (finfun_const \<circ> finfun_const) b'"
-    by(simp add: finfun_const_def)
-qed
-
-lemma finfun_curry_const [simp, code]: "finfun_curry (K$ c) = (K$ K$ c)"
-by(simp add: finfun_curry_def)
-
-lemma finfun_curry_update [simp]:
-  "finfun_curry (f((a, b) $:= c)) = (finfun_curry f)(a $:= (finfun_curry f $ a)(b $:= c))"
-  and finfun_curry_update_code [code]:
-  "finfun_curry (finfun_update_code f (a, b) c) = (finfun_curry f)(a $:= (finfun_curry f $ a)(b $:= c))"
-by(simp_all add: finfun_curry_def)
-
-lemma finfun_Abs_finfun_curry: assumes fin: "f \<in> finfun"
-  shows "(\<lambda>a. Abs_finfun (curry f a)) \<in> finfun"
-  including finfun
-proof -
-  from fin obtain c where c: "finite {ab. f ab \<noteq> c}" unfolding finfun_def by blast
-  have "{a. \<exists>b. f (a, b) \<noteq> c} = fst ` {ab. f ab \<noteq> c}" by(force)
-  hence "{a. curry f a \<noteq> (\<lambda>x. c)} = fst ` {ab. f ab \<noteq> c}"
-    by(auto simp add: curry_def fun_eq_iff)
-  with fin c have "finite {a.  Abs_finfun (curry f a) \<noteq> (K$ c)}"
-    by(simp add: finfun_const_def finfun_curry)
-  thus ?thesis unfolding finfun_def by auto
-qed
-
-lemma finfun_curry_conv_curry:
-  fixes f :: "('a \<times> 'b) \<Rightarrow>f 'c"
-  shows "finfun_curry f = Abs_finfun (\<lambda>a. Abs_finfun (curry (finfun_apply f) a))"
-  including finfun
-proof -
-  have "finfun_curry = (\<lambda>f :: ('a \<times> 'b) \<Rightarrow>f 'c. Abs_finfun (\<lambda>a. Abs_finfun (curry (finfun_apply f) a)))"
-  proof(rule finfun_rec_unique)
-    fix c show "finfun_curry (K$ c) = (K$ K$ c)" by simp
-    fix f a
-    show "finfun_curry (f(a $:= c)) = (finfun_curry f)(fst a $:= (finfun_curry f $ (fst a))(snd a $:= c))"
-      by(cases a) simp
-    show "Abs_finfun (\<lambda>a. Abs_finfun (curry (finfun_apply (K$ c)) a)) = (K$ K$ c)"
-      by(simp add: finfun_curry_def finfun_const_def curry_def)
-    fix g b
-    show "Abs_finfun (\<lambda>aa. Abs_finfun (curry (op $ g(a $:= b)) aa)) =
-      (Abs_finfun (\<lambda>a. Abs_finfun (curry (op $ g) a)))(
-      fst a $:= ((Abs_finfun (\<lambda>a. Abs_finfun (curry (op $ g) a))) $ (fst a))(snd a $:= b))"
-      by(cases a)(auto intro!: ext arg_cong[where f=Abs_finfun] simp add: finfun_curry_def finfun_update_def finfun_Abs_finfun_curry)
-  qed
-  thus ?thesis by(auto simp add: fun_eq_iff)
-qed
-
-subsection \<open>Executable equality for FinFuns\<close>
-
-lemma eq_finfun_All_ext: "(f = g) \<longleftrightarrow> finfun_All ((\<lambda>(x, y). x = y) \<circ>$ ($f, g$))"
-by(simp add: expand_finfun_eq fun_eq_iff finfun_All_All o_def)
-
-instantiation finfun :: ("{card_UNIV,equal}",equal) equal begin
-definition eq_finfun_def [code]: "HOL.equal f g \<longleftrightarrow> finfun_All ((\<lambda>(x, y). x = y) \<circ>$ ($f, g$))"
-instance by(intro_classes)(simp add: eq_finfun_All_ext eq_finfun_def)
-end
-
-lemma [code nbe]:
-  "HOL.equal (f :: _ \<Rightarrow>f _) f \<longleftrightarrow> True"
-  by (fact equal_refl)
-
-subsection \<open>An operator that explicitly removes all redundant updates in the generated representations\<close>
-
-definition finfun_clearjunk :: "'a \<Rightarrow>f 'b \<Rightarrow> 'a \<Rightarrow>f 'b"
-where [simp, code del]: "finfun_clearjunk = id"
-
-lemma finfun_clearjunk_const [code]: "finfun_clearjunk (K$ b) = (K$ b)"
-by simp
-
-lemma finfun_clearjunk_update [code]: 
-  "finfun_clearjunk (finfun_update_code f a b) = f(a $:= b)"
-by simp
-
-subsection \<open>The domain of a FinFun as a FinFun\<close>
-
-definition finfun_dom :: "('a \<Rightarrow>f 'b) \<Rightarrow> ('a \<Rightarrow>f bool)"
-where [code del]: "finfun_dom f = Abs_finfun (\<lambda>a. f $ a \<noteq> finfun_default f)"
-
-lemma finfun_dom_const:
-  "finfun_dom ((K$ c) :: 'a \<Rightarrow>f 'b) = (K$ finite (UNIV :: 'a set) \<and> c \<noteq> undefined)"
-unfolding finfun_dom_def finfun_default_const
-by(auto)(simp_all add: finfun_const_def)
-
-text \<open>
-  @{term "finfun_dom" } raises an exception when called on a FinFun whose domain is a finite type. 
-  For such FinFuns, the default value (and as such the domain) is undefined.
-\<close>
-
-lemma finfun_dom_const_code [code]:
-  "finfun_dom ((K$ c) :: ('a :: card_UNIV) \<Rightarrow>f 'b) = 
-   (if CARD('a) = 0 then (K$ False) else Code.abort (STR ''finfun_dom called on finite type'') (\<lambda>_. finfun_dom (K$ c)))"
-by(simp add: finfun_dom_const card_UNIV card_eq_0_iff)
-
-lemma finfun_dom_finfunI: "(\<lambda>a. f $ a \<noteq> finfun_default f) \<in> finfun"
-using finite_finfun_default[of f]
-by(simp add: finfun_def exI[where x=False])
-
-lemma finfun_dom_update [simp]:
-  "finfun_dom (f(a $:= b)) = (finfun_dom f)(a $:= (b \<noteq> finfun_default f))"
-including finfun unfolding finfun_dom_def finfun_update_def
-apply(simp add: finfun_default_update_const finfun_dom_finfunI)
-apply(fold finfun_update.rep_eq)
-apply(simp add: finfun_upd_apply fun_eq_iff fun_upd_def finfun_default_update_const)
-done
-
-lemma finfun_dom_update_code [code]:
-  "finfun_dom (finfun_update_code f a b) = finfun_update_code (finfun_dom f) a (b \<noteq> finfun_default f)"
-by(simp)
-
-lemma finite_finfun_dom: "finite {x. finfun_dom f $ x}"
-proof(induct f rule: finfun_weak_induct)
-  case (const b)
-  thus ?case
-    by (cases "finite (UNIV :: 'a set) \<and> b \<noteq> undefined")
-      (auto simp add: finfun_dom_const UNIV_def [symmetric] Set.empty_def [symmetric])
-next
-  case (update f a b)
-  have "{x. finfun_dom f(a $:= b) $ x} =
-    (if b = finfun_default f then {x. finfun_dom f $ x} - {a} else insert a {x. finfun_dom f $ x})"
-    by (auto simp add: finfun_upd_apply split: if_split_asm)
-  thus ?case using update by simp
-qed
-
-
-subsection \<open>The domain of a FinFun as a sorted list\<close>
-
-definition finfun_to_list :: "('a :: linorder) \<Rightarrow>f 'b \<Rightarrow> 'a list"
-where
-  "finfun_to_list f = (THE xs. set xs = {x. finfun_dom f $ x} \<and> sorted xs \<and> distinct xs)"
-
-lemma set_finfun_to_list [simp]: "set (finfun_to_list f) = {x. finfun_dom f $ x}" (is ?thesis1)
-  and sorted_finfun_to_list: "sorted (finfun_to_list f)" (is ?thesis2)
-  and distinct_finfun_to_list: "distinct (finfun_to_list f)" (is ?thesis3)
-proof (atomize (full))
-  show "?thesis1 \<and> ?thesis2 \<and> ?thesis3"
-    unfolding finfun_to_list_def
-    by(rule theI')(rule finite_sorted_distinct_unique finite_finfun_dom)+
-qed
-
-lemma finfun_const_False_conv_bot: "op $ (K$ False) = bot"
-by auto
-
-lemma finfun_const_True_conv_top: "op $ (K$ True) = top"
-by auto
-
-lemma finfun_to_list_const:
-  "finfun_to_list ((K$ c) :: ('a :: {linorder} \<Rightarrow>f 'b)) = 
-  (if \<not> finite (UNIV :: 'a set) \<or> c = undefined then [] else THE xs. set xs = UNIV \<and> sorted xs \<and> distinct xs)"
-by(auto simp add: finfun_to_list_def finfun_const_False_conv_bot finfun_const_True_conv_top finfun_dom_const)
-
-lemma finfun_to_list_const_code [code]:
-  "finfun_to_list ((K$ c) :: ('a :: {linorder, card_UNIV} \<Rightarrow>f 'b)) =
-   (if CARD('a) = 0 then [] else Code.abort (STR ''finfun_to_list called on finite type'') (\<lambda>_. finfun_to_list ((K$ c) :: ('a \<Rightarrow>f 'b))))"
-by(auto simp add: finfun_to_list_const card_UNIV card_eq_0_iff)
-
-lemma remove1_insort_insert_same:
-  "x \<notin> set xs \<Longrightarrow> remove1 x (insort_insert x xs) = xs"
-by (metis insort_insert_insort remove1_insort)
-
-lemma finfun_dom_conv:
-  "finfun_dom f $ x \<longleftrightarrow> f $ x \<noteq> finfun_default f"
-by(induct f rule: finfun_weak_induct)(auto simp add: finfun_dom_const finfun_default_const finfun_default_update_const finfun_upd_apply)
-
-lemma finfun_to_list_update:
-  "finfun_to_list (f(a $:= b)) = 
-  (if b = finfun_default f then List.remove1 a (finfun_to_list f) else List.insort_insert a (finfun_to_list f))"
-proof(subst finfun_to_list_def, rule the_equality)
-  fix xs
-  assume "set xs = {x. finfun_dom f(a $:= b) $ x} \<and> sorted xs \<and> distinct xs"
-  hence eq: "set xs = {x. finfun_dom f(a $:= b) $ x}"
-    and [simp]: "sorted xs" "distinct xs" by simp_all
-  show "xs = (if b = finfun_default f then remove1 a (finfun_to_list f) else insort_insert a (finfun_to_list f))"
-  proof(cases "b = finfun_default f")
-    case [simp]: True
-    show ?thesis
-    proof(cases "finfun_dom f $ a")
-      case True
-      have "finfun_to_list f = insort_insert a xs"
-        unfolding finfun_to_list_def
-      proof(rule the_equality)
-        have "set (insort_insert a xs) = insert a (set xs)" by(simp add: set_insort_insert)
-        also note eq also
-        have "insert a {x. finfun_dom f(a $:= b) $ x} = {x. finfun_dom f $ x}" using True
-          by(auto simp add: finfun_upd_apply split: if_split_asm)
-        finally show 1: "set (insort_insert a xs) = {x. finfun_dom f $ x} \<and> sorted (insort_insert a xs) \<and> distinct (insort_insert a xs)"
-          by(simp add: sorted_insort_insert distinct_insort_insert)
-
-        fix xs'
-        assume "set xs' = {x. finfun_dom f $ x} \<and> sorted xs' \<and> distinct xs'"
-        thus "xs' = insort_insert a xs" using 1 by(auto dest: sorted_distinct_set_unique)
-      qed
-      with eq True show ?thesis by(simp add: remove1_insort_insert_same)
-    next
-      case False
-      hence "f $ a = b" by(auto simp add: finfun_dom_conv)
-      hence f: "f(a $:= b) = f" by(simp add: expand_finfun_eq fun_eq_iff finfun_upd_apply)
-      from eq have "finfun_to_list f = xs" unfolding f finfun_to_list_def
-        by(auto elim: sorted_distinct_set_unique intro!: the_equality)
-      with eq False show ?thesis unfolding f by(simp add: remove1_idem)
-    qed
-  next
-    case False
-    show ?thesis
-    proof(cases "finfun_dom f $ a")
-      case True
-      have "finfun_to_list f = xs"
-        unfolding finfun_to_list_def
-      proof(rule the_equality)
-        have "finfun_dom f = finfun_dom f(a $:= b)" using False True
-          by(simp add: expand_finfun_eq fun_eq_iff finfun_upd_apply)
-        with eq show 1: "set xs = {x. finfun_dom f $ x} \<and> sorted xs \<and> distinct xs"
-          by(simp del: finfun_dom_update)
-        
-        fix xs'
-        assume "set xs' = {x. finfun_dom f $ x} \<and> sorted xs' \<and> distinct xs'"
-        thus "xs' = xs" using 1 by(auto elim: sorted_distinct_set_unique)
-      qed
-      thus ?thesis using False True eq by(simp add: insort_insert_triv)
-    next
-      case False
-      have "finfun_to_list f = remove1 a xs"
-        unfolding finfun_to_list_def
-      proof(rule the_equality)
-        have "set (remove1 a xs) = set xs - {a}" by simp
-        also note eq also
-        have "{x. finfun_dom f(a $:= b) $ x} - {a} = {x. finfun_dom f $ x}" using False
-          by(auto simp add: finfun_upd_apply split: if_split_asm)
-        finally show 1: "set (remove1 a xs) = {x. finfun_dom f $ x} \<and> sorted (remove1 a xs) \<and> distinct (remove1 a xs)"
-          by(simp add: sorted_remove1)
-        
-        fix xs'
-        assume "set xs' = {x. finfun_dom f $ x} \<and> sorted xs' \<and> distinct xs'"
-        thus "xs' = remove1 a xs" using 1 by(blast intro: sorted_distinct_set_unique)
-      qed
-      thus ?thesis using False eq \<open>b \<noteq> finfun_default f\<close> 
-        by (simp add: insort_insert_insort insort_remove1)
-    qed
-  qed
-qed (auto simp add: distinct_finfun_to_list sorted_finfun_to_list sorted_remove1 set_insort_insert sorted_insort_insert distinct_insort_insert finfun_upd_apply split: if_split_asm)
-
-lemma finfun_to_list_update_code [code]:
-  "finfun_to_list (finfun_update_code f a b) = 
-  (if b = finfun_default f then List.remove1 a (finfun_to_list f) else List.insort_insert a (finfun_to_list f))"
-by(simp add: finfun_to_list_update)
-
-text \<open>More type class instantiations\<close>
-
-lemma card_eq_1_iff: "card A = 1 \<longleftrightarrow> A \<noteq> {} \<and> (\<forall>x\<in>A. \<forall>y\<in>A. x = y)"
-  (is "?lhs \<longleftrightarrow> ?rhs")
-proof
-  assume ?lhs
-  moreover {
-    fix x y
-    assume A: "x \<in> A" "y \<in> A" and neq: "x \<noteq> y"
-    have "finite A" using \<open>?lhs\<close> by(simp add: card_ge_0_finite)
-    from neq have "2 = card {x, y}" by simp
-    also have "\<dots> \<le> card A" using A \<open>finite A\<close>
-      by(auto intro: card_mono)
-    finally have False using \<open>?lhs\<close> by simp }
-  ultimately show ?rhs by auto
-next
-  assume ?rhs
-  hence "A = {THE x. x \<in> A}"
-    by safe (auto intro: theI the_equality[symmetric])
-  also have "card \<dots> = 1" by simp
-  finally show ?lhs .
-qed
-
-lemma card_UNIV_finfun: 
-  defines "F == finfun :: ('a \<Rightarrow> 'b) set"
-  shows "CARD('a \<Rightarrow>f 'b) = (if CARD('a) \<noteq> 0 \<and> CARD('b) \<noteq> 0 \<or> CARD('b) = 1 then CARD('b) ^ CARD('a) else 0)"
-proof(cases "0 < CARD('a) \<and> 0 < CARD('b) \<or> CARD('b) = 1")
-  case True
-  from True have "F = UNIV"
-  proof
-    assume b: "CARD('b) = 1"
-    hence "\<forall>x :: 'b. x = undefined"
-      by(auto simp add: card_eq_1_iff simp del: One_nat_def)
-    thus ?thesis by(auto simp add: finfun_def F_def intro: exI[where x=undefined])
-  qed(auto simp add: finfun_def card_gt_0_iff F_def intro: finite_subset[where B=UNIV])
-  moreover have "CARD('a \<Rightarrow>f 'b) = card F"
-    unfolding type_definition.Abs_image[OF type_definition_finfun, symmetric]
-    by(auto intro!: card_image inj_onI simp add: Abs_finfun_inject F_def)
-  ultimately show ?thesis by(simp add: card_fun)
-next
-  case False
-  hence infinite: "\<not> (finite (UNIV :: 'a set) \<and> finite (UNIV :: 'b set))"
-    and b: "CARD('b) \<noteq> 1" by(simp_all add: card_eq_0_iff)
-  from b obtain b1 b2 :: 'b where "b1 \<noteq> b2"
-    by(auto simp add: card_eq_1_iff simp del: One_nat_def)
-  let ?f = "\<lambda>a a' :: 'a. if a = a' then b1 else b2"
-  from infinite have "\<not> finite (UNIV :: ('a \<Rightarrow>f 'b) set)"
-  proof(rule contrapos_nn[OF _ conjI])
-    assume finite: "finite (UNIV :: ('a \<Rightarrow>f 'b) set)"
-    hence "finite F"
-      unfolding type_definition.Abs_image[OF type_definition_finfun, symmetric] F_def
-      by(rule finite_imageD)(auto intro: inj_onI simp add: Abs_finfun_inject)
-    hence "finite (range ?f)" 
-      by(rule finite_subset[rotated 1])(auto simp add: F_def finfun_def \<open>b1 \<noteq> b2\<close> intro!: exI[where x=b2])
-    thus "finite (UNIV :: 'a set)"
-      by(rule finite_imageD)(auto intro: inj_onI simp add: fun_eq_iff \<open>b1 \<noteq> b2\<close> split: if_split_asm)
-    
-    from finite have "finite (range (\<lambda>b. ((K$ b) :: 'a \<Rightarrow>f 'b)))"
-      by(rule finite_subset[rotated 1]) simp
-    thus "finite (UNIV :: 'b set)"
-      by(rule finite_imageD)(auto intro!: inj_onI)
-  qed
-  with False show ?thesis by auto
-qed
-
-lemma finite_UNIV_finfun:
-  "finite (UNIV :: ('a \<Rightarrow>f 'b) set) \<longleftrightarrow>
-  (finite (UNIV :: 'a set) \<and> finite (UNIV :: 'b set) \<or> CARD('b) = 1)"
-  (is "?lhs \<longleftrightarrow> ?rhs")
-proof -
-  have "?lhs \<longleftrightarrow> CARD('a \<Rightarrow>f 'b) > 0" by(simp add: card_gt_0_iff)
-  also have "\<dots> \<longleftrightarrow> CARD('a) > 0 \<and> CARD('b) > 0 \<or> CARD('b) = 1"
-    by(simp add: card_UNIV_finfun)
-  also have "\<dots> = ?rhs" by(simp add: card_gt_0_iff)
-  finally show ?thesis .
-qed
-
-instantiation finfun :: (finite_UNIV, card_UNIV) finite_UNIV begin
-definition "finite_UNIV = Phantom('a \<Rightarrow>f 'b)
-  (let cb = of_phantom (card_UNIV :: 'b card_UNIV)
-   in cb = 1 \<or> of_phantom (finite_UNIV :: 'a finite_UNIV) \<and> cb \<noteq> 0)"
-instance
-  by intro_classes (auto simp add: finite_UNIV_finfun_def Let_def card_UNIV finite_UNIV finite_UNIV_finfun card_gt_0_iff)
-end
-
-instantiation finfun :: (card_UNIV, card_UNIV) card_UNIV begin
-definition "card_UNIV = Phantom('a \<Rightarrow>f 'b)
-  (let ca = of_phantom (card_UNIV :: 'a card_UNIV);
-       cb = of_phantom (card_UNIV :: 'b card_UNIV)
-   in if ca \<noteq> 0 \<and> cb \<noteq> 0 \<or> cb = 1 then cb ^ ca else 0)"
-instance by intro_classes (simp add: card_UNIV_finfun_def card_UNIV Let_def card_UNIV_finfun)
-end
-
-
-subsubsection \<open>Bundles for concrete syntax\<close>
-
-bundle finfun_syntax
-begin
-
-type_notation finfun ("(_ \<Rightarrow>f /_)" [22, 21] 21)
-
-notation
-  finfun_const ("K$/ _" [0] 1) and
-  finfun_update ("_'(_ $:= _')" [1000, 0, 0] 1000) and
-  finfun_apply (infixl "$" 999) and
-  finfun_comp (infixr "\<circ>$" 55) and
-  finfun_comp2 (infixr "$\<circ>" 55) and
-  finfun_Diag ("(1'($_,/ _$'))" [0, 0] 1000)
-
-notation (ASCII)
-  finfun_comp (infixr "o$" 55) and
-  finfun_comp2 (infixr "$o" 55)
-
-end
-
-
-bundle no_finfun_syntax
-begin
-
-no_type_notation
-  finfun ("(_ \<Rightarrow>f /_)" [22, 21] 21)
-
-no_notation
-  finfun_const ("K$/ _" [0] 1) and
-  finfun_update ("_'(_ $:= _')" [1000, 0, 0] 1000) and
-  finfun_apply (infixl "$" 999) and
-  finfun_comp (infixr "\<circ>$" 55) and
-  finfun_comp2 (infixr "$\<circ>" 55) and
-  finfun_Diag ("(1'($_,/ _$'))" [0, 0] 1000)
-
-no_notation (ASCII) 
-  finfun_comp (infixr "o$" 55) and
-  finfun_comp2 (infixr "$o" 55)
-
-end
-
-unbundle no_finfun_syntax
-
-end